GoGPT Best VPN GoSearch

OnWorks favicon

DynamicHMC download for Windows

Free download DynamicHMC Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named DynamicHMC whose latest release can be downloaded as v3.6.0sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named DynamicHMC with OnWorks for free.

Follow these instructions in order to run this app:

- 1. Downloaded this application in your PC.

- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 3. Upload this application in such filemanager.

- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.

- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 6. Download the application and install it.

- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.

Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.

SCREENSHOTS

Ad


DynamicHMC


DESCRIPTION

Implementation of robust dynamic Hamiltonian Monte Carlo methods in Julia. In contrast to frameworks that utilize a directed acyclic graph to build a posterior for a Bayesian model from small components, this package requires that you code a log-density function of the posterior in Julia. Derivatives can be provided manually, or using automatic differentiation. Consequently, this package requires that the user is comfortable with the basics of the theory of Bayesian inference, to the extent of coding a (log) posterior density in Julia. This approach allows the use of standard tools like profiling and benchmarking to optimize its performance.



Features

  • The building blocks of the algorithm are implemented using a functional (non-modifying) approach whenever possible
  • Examples available
  • Derivatives can be provided manually, or using automatic differentiation
  • Robust dynamic Hamiltonian Monte Carlo methods (NUTS) in Julia
  • Modern version of the “No-U-turn sampler” in the Julia language
  • Standard tools like profiling and benchmarking to optimize its performance


Programming Language

Julia


Categories

Data Visualization

This is an application that can also be fetched from https://sourceforge.net/projects/dynamichmc.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Free Servers & Workstations

Download Windows & Linux apps

Linux commands

Ad




×
Advertisement
❤️Shop, book, or buy here — no cost, helps keep services free.