EnglishFrenchSpanish

OnWorks favicon

PEFT download for Windows

Free download PEFT Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named PEFT whose latest release can be downloaded as GPTQQuantization,Low-levelAPI.zip. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named PEFT with OnWorks for free.

Follow these instructions in order to run this app:

- 1. Downloaded this application in your PC.

- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 3. Upload this application in such filemanager.

- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.

- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 6. Download the application and install it.

- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.

Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.

SCREENSHOTS

Ad


PEFT


DESCRIPTION

Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full fine-tuning.



Features

  • Accelerate for large scale models leveraging DeepSpeed and Big Model Inference
  • Get comparable performance to full finetuning by adapting LLMs to downstream tasks using consumer hardware
  • GPU memory required for adapting LLMs on the few-shot dataset
  • Parameter Efficient Tuning of Diffusion Models
  • GPU memory required by different settings
  • Parameter Efficient Tuning of LLMs for RLHF components such as Ranker and Policy


Programming Language

Python


Categories

Large Language Models (LLM)

This is an application that can also be fetched from https://sourceforge.net/projects/peft.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Free Servers & Workstations

Download Windows & Linux apps

Linux commands

Ad