GoGPT Best VPN GoSearch

OnWorks favicon

benchm-ml download for Windows

Free download benchm-ml Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named benchm-ml whose latest release can be downloaded as benchm-mlsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named benchm-ml with OnWorks for free.

Sundin ang mga tagubiling ito upang patakbuhin ang app na ito:

- 1. Na-download ang application na ito sa iyong PC.

- 2. Ipasok sa aming file manager https://www.onworks.net/myfiles.php?username=XXXXX kasama ang username na gusto mo.

- 3. I-upload ang application na ito sa naturang filemanager.

- 4. Magsimula ng anumang OS OnWorks online emulator mula sa website na ito, ngunit mas mahusay na Windows online emulator.

- 5. Mula sa OnWorks Windows OS na kasisimula mo pa lang, pumunta sa aming file manager https://www.onworks.net/myfiles.php?username=XXXX gamit ang username na gusto mo.

- 6. I-download ang application at i-install ito.

- 7. I-download ang Wine mula sa iyong mga Linux distributions software repository. Kapag na-install na, maaari mong i-double click ang app upang patakbuhin ang mga ito gamit ang Wine. Maaari mo ring subukan ang PlayOnLinux, isang magarbong interface sa ibabaw ng Wine na tutulong sa iyong mag-install ng mga sikat na programa at laro sa Windows.

Ang alak ay isang paraan upang patakbuhin ang software ng Windows sa Linux, ngunit walang kinakailangang Windows. Ang alak ay isang open-source na layer ng compatibility ng Windows na maaaring direktang magpatakbo ng mga program sa Windows sa anumang desktop ng Linux. Sa totoo lang, sinusubukan ng Wine na muling ipatupad ang sapat na Windows mula sa simula upang mapatakbo nito ang lahat ng mga Windows application na iyon nang hindi talaga nangangailangan ng Windows.

MGA LALAKI

Ad


benchm-ml


DESCRIPTION

This repository is designed to provide a minimal benchmark framework comparing commonly used machine learning libraries in terms of scalability, speed, and classification accuracy. The focus is on binary classification tasks without missing data, where inputs can be numeric or categorical (after one-hot encoding). It targets large scale settings by varying the number of observations (n) up to millions and the number of features (after expansion) to about a thousand, to stress test different implementations. The benchmarks cover algorithms like logistic regression, random forest, gradient boosting, and deep neural networks, and they compare across toolkits such as scikit-learn, R packages, xgboost, H2O, Spark MLlib, etc. The repository is structured in logical folders (e.g. “1-linear”, “2-rf”, “3-boosting”, “4-DL”) each corresponding to algorithm categories.



Mga tampok

  • Comparative benchmarks across ML toolkits (scikit-learn, R, H2O, xgboost, Spark MLlib)
  • Algorithm coverage: logistic regression, random forests, boosting, deep neural nets
  • Scalable testing with large n (e.g. 10K → 10M) and p (~1K)
  • Synthetic data generation and real dataset integration (e.g. Higgs)
  • Structured folder organization by algorithm type
  • Runtime, memory, and accuracy measurement tools to compare implementations


Wika ng Programming

R


Kategorya

Mga Aklatan

This is an application that can also be fetched from https://sourceforge.net/projects/benchm-ml.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Mga Libreng Server at Workstation

Mag-download ng Windows at Linux apps

Linux command

Ad




×
anunsyo
❤️Mamili, mag-book, o bumili dito — walang gastos, tumutulong na panatilihing libre ang mga serbisyo.