This is the Windows app named Detect and Track whose latest release can be downloaded as Detect-Tracksourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Detect and Track with OnWorks for free.
Sundin ang mga tagubiling ito upang patakbuhin ang app na ito:
- 1. Na-download ang application na ito sa iyong PC.
- 2. Ipasok sa aming file manager https://www.onworks.net/myfiles.php?username=XXXXX kasama ang username na gusto mo.
- 3. I-upload ang application na ito sa naturang filemanager.
- 4. Magsimula ng anumang OS OnWorks online emulator mula sa website na ito, ngunit mas mahusay na Windows online emulator.
- 5. Mula sa OnWorks Windows OS na kasisimula mo pa lang, pumunta sa aming file manager https://www.onworks.net/myfiles.php?username=XXXX gamit ang username na gusto mo.
- 6. I-download ang application at i-install ito.
- 7. I-download ang Wine mula sa iyong mga Linux distributions software repository. Kapag na-install na, maaari mong i-double click ang app upang patakbuhin ang mga ito gamit ang Wine. Maaari mo ring subukan ang PlayOnLinux, isang magarbong interface sa ibabaw ng Wine na tutulong sa iyong mag-install ng mga sikat na programa at laro sa Windows.
Ang alak ay isang paraan upang patakbuhin ang software ng Windows sa Linux, ngunit walang kinakailangang Windows. Ang alak ay isang open-source na layer ng compatibility ng Windows na maaaring direktang magpatakbo ng mga program sa Windows sa anumang desktop ng Linux. Sa totoo lang, sinusubukan ng Wine na muling ipatupad ang sapat na Windows mula sa simula upang mapatakbo nito ang lahat ng mga Windows application na iyon nang hindi talaga nangangailangan ng Windows.
MGA LALAKI
Ad
I-detect at Subaybayan
DESCRIPTION
Detect-Track is the official implementation of the ICCV 2017 paper Detect to Track and Track to Detect by Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. The framework unifies object detection and tracking into a single pipeline, allowing detection to support tracking and tracking to enhance detection performance. Built upon a modified version of R-FCN, the code provides implementations using backbone networks such as ResNet-50, ResNet-101, ResNeXt-101, and Inception-v4, with results demonstrating state-of-the-art accuracy on the ImageNet VID dataset. The repository includes MATLAB-based training and testing scripts, along with pre-trained models and pre-computed region proposals for reproducibility. Multiple testing configurations are available, including multi-frame input and enhanced versions that refine tracking boxes and integrate detection confidence across frames.
Mga tampok
- Implements Detect-to-Track and Track-to-Detect framework (ICCV 2017)
- Built on a modified R-FCN with ResNet, ResNeXt, and Inception backbones
- Provides pre-trained models and pre-computed region proposals
- Training and testing scripts for ImageNet VID and DET datasets
- Multiple testing modes including multi-frame and refined tracking
- Results achieve over 82% mAP on ImageNet VID validation set
Wika ng Programming
C++, MATLAB
Kategorya
This is an application that can also be fetched from https://sourceforge.net/projects/detect-and-track.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.