GoGPT Best VPN GoSearch

OnWorks favicon

Summarize from Feedback download for Windows

Free download Summarize from Feedback Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named Summarize from Feedback whose latest release can be downloaded as summarize-from-feedbacksourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Summarize from Feedback with OnWorks for free.

Sundin ang mga tagubiling ito upang patakbuhin ang app na ito:

- 1. Na-download ang application na ito sa iyong PC.

- 2. Ipasok sa aming file manager https://www.onworks.net/myfiles.php?username=XXXXX kasama ang username na gusto mo.

- 3. I-upload ang application na ito sa naturang filemanager.

- 4. Magsimula ng anumang OS OnWorks online emulator mula sa website na ito, ngunit mas mahusay na Windows online emulator.

- 5. Mula sa OnWorks Windows OS na kasisimula mo pa lang, pumunta sa aming file manager https://www.onworks.net/myfiles.php?username=XXXX gamit ang username na gusto mo.

- 6. I-download ang application at i-install ito.

- 7. I-download ang Wine mula sa iyong mga Linux distributions software repository. Kapag na-install na, maaari mong i-double click ang app upang patakbuhin ang mga ito gamit ang Wine. Maaari mo ring subukan ang PlayOnLinux, isang magarbong interface sa ibabaw ng Wine na tutulong sa iyong mag-install ng mga sikat na programa at laro sa Windows.

Ang alak ay isang paraan upang patakbuhin ang software ng Windows sa Linux, ngunit walang kinakailangang Windows. Ang alak ay isang open-source na layer ng compatibility ng Windows na maaaring direktang magpatakbo ng mga program sa Windows sa anumang desktop ng Linux. Sa totoo lang, sinusubukan ng Wine na muling ipatupad ang sapat na Windows mula sa simula upang mapatakbo nito ang lahat ng mga Windows application na iyon nang hindi talaga nangangailangan ng Windows.

MGA LALAKI

Ad


Buod mula sa Feedback


DESCRIPTION

The summarize-from-feedback repository implements the methods from the paper “Learning to Summarize from Human Feedback”. Its purpose is to train a summarization model that better aligns with human preferences by first collecting human feedback (comparisons between summaries) to train a reward model, and then fine-tuning a policy (summarizer) to maximize that learned reward. The code includes different stages: a supervised baseline (i.e. standard summarization training), the reward modeling component, and the reinforcement learning (or preference-based fine-tuning) phase. The repo also includes utilities for dataset handling, modeling architectures, inference, and evaluation. Because the codebase is experimental, parts of it may not run out-of-box depending on dependencies or environment, but it remains a canonical reference for how to implement summarization via human feedback.



Mga tampok

  • Supervised baseline summarization model to initialize performance
  • Reward model trained from human comparisons of summary pairs
  • Preference-based fine-tuning / RL stage to optimize summarizer toward human judgments
  • Dataset handling modules (loading, comparisons, splits)
  • Inference and evaluation scripts to generate and score summaries
  • Architecture layout files (e.g. model_layout.py) supporting modular model definitions


Wika ng Programming

Sawa


Kategorya

Edukasyon

This is an application that can also be fetched from https://sourceforge.net/projects/summarize-from-feedback.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Mga Libreng Server at Workstation

Mag-download ng Windows at Linux apps

Linux command

Ad




×
anunsyo
❤️Mamili, mag-book, o bumili dito — walang gastos, tumutulong na panatilihing libre ang mga serbisyo.