This is the Linux app named maskrcnn-benchmark whose latest release can be downloaded as Initialreleasesourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named maskrcnn-benchmark with OnWorks for free.
Bu uygulamayı çalıştırmak için şu talimatları izleyin:
- 1. Bu uygulamayı PC'nize indirdiniz.
- 2. Dosya yöneticimize https://www.onworks.net/myfiles.php?username=XXXXX istediğiniz kullanıcı adını girin.
- 3. Bu uygulamayı böyle bir dosya yöneticisine yükleyin.
- 4. Bu web sitesinden OnWorks Linux çevrimiçi veya Windows çevrimiçi öykünücüsünü veya MACOS çevrimiçi öykünücüsünü başlatın.
- 5. Yeni başladığınız OnWorks Linux işletim sisteminden, istediğiniz kullanıcı adıyla https://www.onworks.net/myfiles.php?username=XXXXX dosya yöneticimize gidin.
- 6. Uygulamayı indirin, kurun ve çalıştırın.
EKRAN
Ad
maskrcnn-kıyaslama
AÇIKLAMA
Mask R-CNN Benchmark is a PyTorch-based framework that provides high-performance implementations of object detection, instance segmentation, and keypoint detection models. Originally built to benchmark Mask R-CNN and related models, it offers a clean, modular design to train and evaluate detection systems efficiently on standard datasets like COCO. The framework integrates critical components—region proposal networks (RPNs), RoIAlign layers, mask heads, and backbone architectures such as ResNet and FPN—optimized for both accuracy and speed. It supports multi-GPU distributed training, mixed precision, and custom data loaders for new datasets. Built as a reference implementation, it became a foundation for the next-generation Detectron2, yet remains widely used for research needing a stable, reproducible environment. Visualization tools, model zoo checkpoints, and benchmark scripts make it easy to replicate state-of-the-art results or fine-tune models for custom tasks.
Özellikler
- High-performance implementations of Mask R-CNN, Faster R-CNN, and keypoint models
- Modular components for RPNs, RoIAlign, mask heads, and backbones
- Multi-GPU distributed training and mixed precision support
- Dataset support and loaders for COCO, Pascal VOC, and custom datasets
- Visualization and evaluation tools for detection and segmentation results
- Reproducible reference implementation for benchmarking and fine-tuning
Programlama dili
Python
Kategoriler
This is an application that can also be fetched from https://sourceforge.net/projects/maskrcnn-benchmark.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.