GoGPT Best VPN GoSearch

OnWorks favicon'u

RLax download for Linux

Free download RLax Linux app to run online in Ubuntu online, Fedora online or Debian online

This is the Linux app named RLax whose latest release can be downloaded as RLax0.1.8sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named RLax with OnWorks for free.

Bu uygulamayı çalıştırmak için şu talimatları izleyin:

- 1. Bu uygulamayı PC'nize indirdiniz.

- 2. Dosya yöneticimize https://www.onworks.net/myfiles.php?username=XXXXX istediğiniz kullanıcı adını girin.

- 3. Bu uygulamayı böyle bir dosya yöneticisine yükleyin.

- 4. Bu web sitesinden OnWorks Linux çevrimiçi veya Windows çevrimiçi öykünücüsünü veya MACOS çevrimiçi öykünücüsünü başlatın.

- 5. Yeni başladığınız OnWorks Linux işletim sisteminden, istediğiniz kullanıcı adıyla https://www.onworks.net/myfiles.php?username=XXXXX dosya yöneticimize gidin.

- 6. Uygulamayı indirin, kurun ve çalıştırın.

EKRAN

Ad


RLaks


AÇIKLAMA

RLax (pronounced “relax”) is a JAX-based library developed by Google DeepMind that provides reusable mathematical building blocks for constructing reinforcement learning (RL) agents. Rather than implementing full algorithms, RLax focuses on the core functional operations that underpin RL methods—such as computing value functions, returns, policy gradients, and loss terms—allowing researchers to flexibly assemble their own agents. It supports both on-policy and off-policy learning, as well as value-based, policy-based, and model-based approaches. RLax is fully JIT-compilable with JAX, enabling high-performance execution across CPU, GPU, and TPU backends. The library implements tools for Bellman equations, return distributions, general value functions, and policy optimization in both continuous and discrete action spaces. It integrates seamlessly with DeepMind’s Haiku (for neural network definition) and Optax (for optimization), making it a key component in modular RL pipelines.



Özellikler

  • Modular reinforcement learning primitives (values, returns, and policies)
  • JAX-optimized for GPU/TPU acceleration and automatic differentiation
  • Supports on-policy and off-policy learning paradigms
  • Implements distributional value functions and general value functions
  • Integrates with Haiku and Optax for neural network and optimization pipelines
  • Comprehensive testing and examples for reproducibility and educational use


Programlama dili

Python, Unix Kabuğu


Kategoriler

Kütüphaneler

This is an application that can also be fetched from https://sourceforge.net/projects/rlax.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Ücretsiz Sunucular ve İş İstasyonları

Windows ve Linux uygulamalarını indirin

Linux komutları

Ad




×
reklâm
❤️Buradan alışveriş yapın, rezervasyon yapın veya satın alın; ücretsizdir, hizmetlerin ücretsiz kalmasına yardımcı olur.