This is the Linux app named Stanford Machine Learning Course whose latest release can be downloaded as Stanford-Machine-Learning-Coursesourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Stanford Machine Learning Course with OnWorks for free.
Bu uygulamayı çalıştırmak için şu talimatları izleyin:
- 1. Bu uygulamayı PC'nize indirdiniz.
- 2. Dosya yöneticimize https://www.onworks.net/myfiles.php?username=XXXXX istediğiniz kullanıcı adını girin.
- 3. Bu uygulamayı böyle bir dosya yöneticisine yükleyin.
- 4. Bu web sitesinden OnWorks Linux çevrimiçi veya Windows çevrimiçi öykünücüsünü veya MACOS çevrimiçi öykünücüsünü başlatın.
- 5. Yeni başladığınız OnWorks Linux işletim sisteminden, istediğiniz kullanıcı adıyla https://www.onworks.net/myfiles.php?username=XXXXX dosya yöneticimize gidin.
- 6. Uygulamayı indirin, kurun ve çalıştırın.
Stanford Makine Öğrenmesi Kursu
Ad
AÇIKLAMA
The Stanford Machine Learning Course Exercises repository contains programming assignments from the well-known Stanford Machine Learning online course. It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
Özellikler
- Contains programming exercises from Stanford’s Machine Learning course
- Implements algorithms in Python and MATLAB/Octave
- Covers supervised learning methods including regression and classification
- Includes unsupervised learning methods such as clustering and PCA
- Provides neural network training and optimization examples
- Features recommender systems and anomaly detection exercises
Programlama dili
MATLAB, Python, Unix Shell
Kategoriler
This is an application that can also be fetched from https://sourceforge.net/projects/stanford-ml.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.