This is the Linux app named Map-Anything whose latest release can be downloaded as map-anythingsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Map-Anything with OnWorks for free.
Дотримуйтесь цих інструкцій, щоб запустити цю програму:
- 1. Завантажив цю програму на свій ПК.
- 2. Введіть у наш файловий менеджер https://www.onworks.net/myfiles.php?username=XXXXX із потрібним ім'ям користувача.
- 3. Завантажте цю програму в такий файловий менеджер.
- 4. Запустіть онлайн-емулятор OnWorks Linux або Windows або онлайн-емулятор MACOS з цього веб-сайту.
- 5. З ОС OnWorks Linux, яку ви щойно запустили, перейдіть до нашого файлового менеджера https://www.onworks.net/myfiles.php?username=XXXXX з потрібним іменем користувача.
- 6. Завантажте програму, встановіть її та запустіть.
ЕКРАНИ
Ad
Карта-Що завгодно
ОПИС
Map-Anything is a universal, feed-forward transformer for metric 3D reconstruction that predicts a scene’s geometry and camera parameters directly from visual inputs. Instead of stitching together many task-specific models, it uses a single architecture that supports a wide range of 3D tasks—multi-image structure-from-motion, multi-view stereo, monocular metric depth, registration, depth completion, and more. The model flexibly accepts different input combinations (images, intrinsics, poses, sparse or dense depth) and produces a rich set of outputs including per-pixel 3D points, camera intrinsics, camera poses, ray directions, confidence maps, and validity masks. Its inference path is fully feed-forward with optional mixed-precision and memory-efficient modes, making it practical to scale to long image sequences while keeping latency predictable.
Функції
- One feed-forward transformer that covers >10 reconstruction tasks
- Multi-modal inputs (images, calibration, poses, depth) with unified APIs
- Dense metric outputs: 3D points, depth (z and along-ray), intrinsics, poses, ray directions, confidence and masks
- Turnkey demos plus exporters to COLMAP and Gaussian splatting pipelines
- Mixed-precision and memory-efficient inference for long sequences
- Modular “building blocks” (UniCeption, WAI) to scale data and models
Мова програмування
Python
Категорії
This is an application that can also be fetched from https://sourceforge.net/projects/map-anything.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.