GoGPT Best VPN GoSearch

Значок OnWorks

Detic download for Windows

Free download Detic Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named Detic whose latest release can be downloaded as Deticsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Detic with OnWorks for free.

Дотримуйтесь цих інструкцій, щоб запустити цю програму:

- 1. Завантажив цю програму на свій ПК.

- 2. Введіть у наш файловий менеджер https://www.onworks.net/myfiles.php?username=XXXXX із потрібним ім'ям користувача.

- 3. Завантажте цю програму в такий файловий менеджер.

- 4. Запустіть будь-який онлайн емулятор ОС OnWorks з цього веб-сайту, але кращий онлайн-емулятор Windows.

- 5. З ОС OnWorks Windows, яку ви щойно запустили, перейдіть до нашого файлового менеджера https://www.onworks.net/myfiles.php?username=XXXXX з потрібним іменем користувача.

- 6. Завантажте програму та встановіть її.

- 7. Завантажте Wine зі сховищ програмного забезпечення дистрибутивів Linux. Після встановлення ви можете двічі клацнути програму, щоб запустити їх за допомогою Wine. Ви також можете спробувати PlayOnLinux, модний інтерфейс замість Wine, який допоможе вам встановити популярні програми та ігри Windows.

Wine — це спосіб запуску програмного забезпечення Windows на Linux, але без використання Windows. Wine — це рівень сумісності Windows з відкритим вихідним кодом, який може запускати програми Windows безпосередньо на будь-якому робочому столі Linux. По суті, Wine намагається повторно реалізувати достатньо Windows з нуля, щоб він міг запускати всі ці програми Windows, насправді не потребуючи Windows.

ЕКРАНИ

Ad


Детик


ОПИС

Detic (“Detecting Twenty-thousand Classes using Image-level Supervision”) is a large-vocabulary object detector that scales beyond fully annotated datasets by leveraging image-level labels. It decouples localization from classification, training a strong box localizer on standard detection data while learning classifiers from weak supervision and large image-tag corpora. A shared region proposal backbone feeds a flexible classification head that can expand to tens of thousands of categories without exhaustive box annotations. The system supports zero- or few-shot extension to novel categories via semantic embeddings and class name supervision, making “open-world” detection practical. Built on Detectron2, the repo includes configs, pretrained weights, and conversion tools to mix fully and weakly supervised sources. Detic is especially useful for applications where label space is vast and long-tailed, but dense bounding-box annotation is infeasible.



Функції

  • Large-vocabulary detection with decoupled localization and classification
  • Training from image-level tags to expand categories at scale
  • Compatibility with Detectron2 backbones and region proposal heads
  • Zero-/few-shot transfer via semantic class embeddings and names
  • Configs and weights for mixing fully and weakly supervised data
  • Tools for dataset conversion, evaluation, and large-label-space deployments


Мова програмування

Python


Категорії

Моделі виявлення об'єктів

This is an application that can also be fetched from https://sourceforge.net/projects/detic.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Безкоштовні сервери та робочі станції

Завантажте програми для Windows і Linux

Команди Linux

Ad




×
реклама
❤️Робіть покупки, бронюйте або купуйте тут — безкоштовно, це допомагає зберегти послуги безкоштовними.