GoGPT Best VPN GoSearch

Biểu tượng yêu thích OnWorks

ResNeXt download for Windows

Free download ResNeXt Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named ResNeXt whose latest release can be downloaded as ResNeXtsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named ResNeXt with OnWorks for free.

Làm theo các hướng dẫn sau để chạy ứng dụng này:

- 1. Đã tải ứng dụng này xuống PC của bạn.

- 2. Nhập vào trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.

- 3. Tải lên ứng dụng này trong trình quản lý tệp như vậy.

- 4. Khởi động bất kỳ trình giả lập trực tuyến OS OnWorks nào từ trang web này, nhưng trình giả lập trực tuyến Windows tốt hơn.

- 5. Từ Hệ điều hành Windows OnWorks bạn vừa khởi động, hãy truy cập trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.

- 6. Tải xuống ứng dụng và cài đặt nó.

- 7. Tải xuống Wine từ kho phần mềm phân phối Linux của bạn. Sau khi cài đặt, bạn có thể nhấp đúp vào ứng dụng để chạy chúng với Wine. Bạn cũng có thể thử PlayOnLinux, một giao diện đẹp mắt trên Wine sẽ giúp bạn cài đặt các chương trình và trò chơi phổ biến của Windows.

Wine là một cách để chạy phần mềm Windows trên Linux, nhưng không cần Windows. Wine là một lớp tương thích Windows mã nguồn mở có thể chạy các chương trình Windows trực tiếp trên bất kỳ máy tính để bàn Linux nào. Về cơ bản, Wine đang cố gắng triển khai lại đủ Windows từ đầu để nó có thể chạy tất cả các ứng dụng Windows đó mà không thực sự cần đến Windows.

MÀN HÌNH

Ad


ResNeXt


MÔ TẢ

ResNeXt is a deep neural network architecture for image classification built on the idea of aggregated residual transformations. Instead of simply increasing depth or width, ResNeXt introduces a new dimension called cardinality, which refers to the number of parallel transformation paths (i.e. the number of “branches”) that are aggregated together. Each branch is a small transformation (e.g. bottleneck block) and their outputs are summed—this enables richer representation without excessive parameter blowup. The design is modular and homogeneous, making it relatively easy to scale (by tuning cardinality, width, depth) and adopt in existing residual frameworks. The official repository offers a Torch (Lua) implementation with code for training, evaluation, and pretrained models on ImageNet. In practice, ResNeXt models often outperform standard ResNet models of comparable complexity.



Tính năng

  • Aggregated residual transformations combining multiple parallel branches
  • Introduces “cardinality” as a new architectural dimension
  • Modular bottleneck blocks with easy scaling across width/depth/cardinality
  • Torch implementation with training and evaluation scripts
  • Pretrained models for ImageNet classification
  • Compatibility with residual architectures and straightforward integration


Ngôn ngữ lập trình

lấy


Danh Mục

Thư viện mạng thần kinh

This is an application that can also be fetched from https://sourceforge.net/projects/resnext.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Máy chủ & Máy trạm miễn phí

Tải xuống ứng dụng Windows & Linux

Lệnh Linux

Ad




×
quảng cáo
❤️Mua sắm, đặt phòng hoặc mua tại đây — không mất phí, giúp duy trì các dịch vụ miễn phí.