This is the Linux app named Gemma in PyTorch whose latest release can be downloaded as gemma_pytorchsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Gemma in PyTorch with OnWorks for free.
请按照以下说明运行此应用程序:
- 1. 在您的 PC 中下载此应用程序。
- 2. 在我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX 中输入您想要的用户名。
- 3. 在这样的文件管理器中上传这个应用程序。
- 4. 从此网站启动OnWorks Linux online 或Windows online emulator 或MACOS online emulator。
- 5. 从您刚刚启动的 OnWorks Linux 操作系统,使用您想要的用户名转到我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX。
- 6. 下载应用程序,安装并运行。
SCREENSHOTS
Ad
Gemma 在 PyTorch 中
商品描述
gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation so teams can benchmark and iterate rapidly. The code is organized to be legible and hackable, exposing attention blocks, positional encodings, and head configurations. With standard PyTorch abstractions, it integrates easily into existing training loops, loggers, and evaluation harnesses.
功能
- PyTorch implementations and configs for Gemma model variants
- Ready-to-use generation, tokenization, and checkpoint loading
- Drop-in modules compatible with common PyTorch stacks
- Example notebooks for tuning and evaluation
- Quantization and inference optimization paths
- Parameter-efficient fine-tuning adapters and examples
程式语言
Python
分类
This is an application that can also be fetched from https://sourceforge.net/projects/gemma-in-pytorch.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.