This is the Linux app named SimSiam whose latest release can be downloaded as simsiamsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named SimSiam with OnWorks for free.
请按照以下说明运行此应用程序:
- 1. 在您的 PC 中下载此应用程序。
- 2. 在我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX 中输入您想要的用户名。
- 3. 在这样的文件管理器中上传这个应用程序。
- 4. 从此网站启动OnWorks Linux online 或Windows online emulator 或MACOS online emulator。
- 5. 从您刚刚启动的 OnWorks Linux 操作系统,使用您想要的用户名转到我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX。
- 6. 下载应用程序,安装并运行。
SCREENSHOTS
Ad
模拟暹罗
商品描述
SimSiam is a PyTorch implementation of “Exploring Simple Siamese Representation Learning” by Xinlei Chen and Kaiming He. The project introduces a minimalist approach to self-supervised learning that avoids negative pairs, momentum encoders, or large memory banks—key complexities of prior contrastive methods. SimSiam learns image representations by maximizing similarity between two augmented views of the same image through a Siamese neural network with a stop-gradient operation, preventing feature collapse. This elegant yet effective design achieves strong results in unsupervised learning benchmarks such as ImageNet without requiring contrastive losses. The repository provides scripts for both unsupervised pre-training and linear evaluation, using a ResNet-50 backbone by default. It is compatible with multi-GPU distributed training and can be fine-tuned or transferred to downstream tasks like object detection following the same setup as MoCo.
功能
- Minimal self-supervised learning framework without negative pairs or momentum encoders
- PyTorch-based implementation optimized for distributed multi-GPU training
- Fully reproducible training pipeline for ImageNet using default hyperparameters from the paper
- Includes both unsupervised pre-training and linear evaluation scripts
- LARS optimizer support via NVIDIA Apex for large-batch training
- Compatible with object detection transfer setups from MoCo
程式语言
Python
分类
This is an application that can also be fetched from https://sourceforge.net/projects/simsiam.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.