This is the Windows app named Reinforcement-learning whose latest release can be downloaded as reinforcement-learningsourcecode.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Reinforcement-learning with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS
Ad
Reinforcement-learning
DESCRIPTION
Reinforcement-learning is a widely used educational repository that provides implementations, exercises, and solutions for a broad range of reinforcement learning algorithms, designed to complement foundational texts and courses in the field. The project collects popular approaches such as dynamic programming, Monte Carlo methods, temporal difference learning, Q-learning, SARSA, deep Q-networks, and policy gradient techniques, often demonstrated with Python and OpenAI Gym environments so users can experiment with agents learning in simulated tasks. For each algorithm category, the repository pairs conceptual descriptions with runnable code and often illustrated exercises that help solidify understanding by bridging theory with practice. It’s structured to serve learners progressing from basic tabular methods to function approximation and deep learning extensions, making it suitable for students, researchers, or practitioners exploring reinforcement learning fundamentals.
Features
- Implementations of many RL algorithms
- Exercises paired with solutions
- Python and Gym-based examples
- From basics to deep reinforcement learning
- Aligned with canonical RL textbooks and courses
- Encourages experimentation and learning
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/reinforcement-learn-ai.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
