This is the Linux app named PyTorch3D whose latest release can be downloaded as Version0.7.8sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named PyTorch3D with OnWorks for free.
Befolgen Sie diese Anweisungen, um diese App auszuführen:
- 1. Diese Anwendung auf Ihren PC heruntergeladen.
- 2. Geben Sie in unserem Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX den gewünschten Benutzernamen ein.
- 3. Laden Sie diese Anwendung in einem solchen Dateimanager hoch.
- 4. Starten Sie den OnWorks Linux-Online- oder Windows-Online-Emulator oder den MACOS-Online-Emulator von dieser Website.
- 5. Rufen Sie vom gerade gestarteten OnWorks Linux-Betriebssystem aus unseren Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX mit dem gewünschten Benutzernamen auf.
- 6. Laden Sie die Anwendung herunter, installieren Sie sie und führen Sie sie aus.
SCREENSHOTS
Ad
PyTorch3D
BESCHREIBUNG
PyTorch3D is a comprehensive library for 3D deep learning that brings differentiable rendering, geometric operations, and 3D data structures into the PyTorch ecosystem. It’s designed to make it easy to build and train neural networks that work directly with 3D data such as meshes, point clouds, and implicit surfaces. The library provides fast GPU-accelerated implementations of rendering pipelines, transformations, rasterization, and lighting—making it possible to compute gradients through full 3D rendering processes. Researchers use it for tasks like shape generation, reconstruction, view synthesis, and visual reasoning. PyTorch3D also includes utilities for loading, transforming, and sampling 3D assets, so models can be trained end-to-end from 2D supervision or partial data. Its modular design allows easy extension—components like differentiable rasterizers, mesh blending, or signed distance field (SDF) modules can be swapped or combined to test new architectures quickly.
Eigenschaften
- Differentiable rendering for meshes, point clouds, and implicit surfaces
- GPU-accelerated rasterization and lighting operations
- Modular design for composable 3D pipelines and easy experimentation
- Utilities for loading, transforming, and augmenting 3D datasets
- Integration with PyTorch autograd for gradient-based optimization in 3D
- Ready-to-use functions for shape reconstruction, view synthesis, and generation
Programmiersprache
Python
Kategorien
This is an application that can also be fetched from https://sourceforge.net/projects/pytorch3d.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.