This is the Windows app named Flux.jl whose latest release can be downloaded as v0.16.4sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Flux.jl with OnWorks for free.
Befolgen Sie diese Anweisungen, um diese App auszuführen:
- 1. Diese Anwendung auf Ihren PC heruntergeladen.
- 2. Geben Sie in unserem Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX den gewünschten Benutzernamen ein.
- 3. Laden Sie diese Anwendung in einem solchen Dateimanager hoch.
- 4. Starten Sie einen beliebigen OS OnWorks-Online-Emulator von dieser Website, aber einen besseren Windows-Online-Emulator.
- 5. Rufen Sie vom gerade gestarteten OnWorks Windows-Betriebssystem unseren Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX mit dem gewünschten Benutzernamen auf.
- 6. Laden Sie die Anwendung herunter und installieren Sie sie.
- 7. Laden Sie Wine aus den Software-Repositorys Ihrer Linux-Distributionen herunter. Nach der Installation können Sie dann auf die App doppelklicken, um sie mit Wine auszuführen. Sie können auch PlayOnLinux ausprobieren, eine schicke Schnittstelle über Wine, die Ihnen bei der Installation beliebter Windows-Programme und -Spiele hilft.
Wine ist eine Möglichkeit, Windows-Software unter Linux auszuführen, jedoch ohne Windows. Wine ist eine Open-Source-Windows-Kompatibilitätsschicht, die Windows-Programme direkt auf jedem Linux-Desktop ausführen kann. Im Wesentlichen versucht Wine, genügend Windows von Grund auf neu zu implementieren, damit alle diese Windows-Anwendungen ausgeführt werden können, ohne dass Windows tatsächlich benötigt wird.
SCREENSHOTS
Ad
Fluss.jl
BESCHREIBUNG
Flux is an elegant approach to machine learning. It's a 100% pure Julia stack and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable. Flux provides a single, intuitive way to define models, just like mathematical notation. Julia transparently compiles your code, optimizing and fusing kernels for the GPU, for the best performance. Existing Julia libraries are differentiable and can be incorporated directly into Flux models. Cutting-edge models such as Neural ODEs are first class, and Zygote enables overhead-free gradients. GPU kernels can be written directly in Julia via CUDA.jl. Flux is uniquely hackable and any part can be tweaked, from GPU code to custom gradients and layers.
Eigenschaften
- Compiled Eager Code
- Differentiable Programming
- First-class GPU support
- Flux has features that sets it apart among ML systems
- Probabilistische Programmierung
- Graph Neuronale Netze
- Computer Vision
- Verarbeitung natürlicher Sprache
Programmiersprache
Julia
Kategorien
This is an application that can also be fetched from https://sourceforge.net/projects/flux-jl.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.