GoGPT Best VPN GoSearch

icono de página de OnWorks

Graph Nets library download for Linux

Free download Graph Nets library Linux app to run online in Ubuntu online, Fedora online or Debian online

This is the Linux app named Graph Nets library whose latest release can be downloaded as graph_netsv1.1.0sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Graph Nets library with OnWorks for free.

Siga estas instrucciones para ejecutar esta aplicación:

- 1. Descargue esta aplicación en su PC.

- 2. Ingrese en nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.

- 3. Cargue esta aplicación en dicho administrador de archivos.

- 4. Inicie el emulador en línea OnWorks Linux o Windows en línea o el emulador en línea MACOS desde este sitio web.

- 5. Desde el SO OnWorks Linux que acaba de iniciar, vaya a nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.

- 6. Descarga la aplicación, instálala y ejecútala.

SCREENSHOTS

Ad


Biblioteca de redes gráficas


DESCRIPCIÓN

Graph Nets, developed by Google DeepMind, is a Python library designed for constructing and training graph neural networks (GNNs) using TensorFlow and Sonnet. It provides a high-level, flexible framework for building neural architectures that operate directly on graph-structured data. A graph network takes graphs as inputs, consisting of edges, nodes, and global attributes, and produces updated graphs with modified feature representations at each level. This library implements the foundational ideas from DeepMind’s paper “Relational Inductive Biases, Deep Learning, and Graph Networks”, offering tools to explore relational reasoning and message-passing neural networks. Graph Nets supports both TensorFlow 1 and TensorFlow 2, working with CPU and GPU environments, and includes educational Jupyter demos for shortest path finding, sorting, and physical prediction tasks. The codebase emphasizes modularity, allowing users to easily define their own edge, node, and global update functions.



Caracteristicas

  • Framework for building graph neural networks using TensorFlow and Sonnet
  • Supports graph-level, node-level, and edge-level feature learning
  • Compatible with TensorFlow 1.x and 2.x, on both CPU and GPU setups
  • Includes Colab and Jupyter demo notebooks for hands-on learning and experimentation
  • Enables modular architecture design with customizable graph update functions
  • Suitable for a range of tasks including physical simulation, sorting, and pathfinding


Lenguaje de programación

Python


Categorías

Bibliotecas

This is an application that can also be fetched from https://sourceforge.net/projects/graph-nets-library.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Servidores y estaciones de trabajo gratuitos

Descargar aplicaciones de Windows y Linux

Comandos de Linux

Ad




×
Anuncio
❤ ️Compre, reserve o adquiera aquí: sin costo, ayuda a mantener los servicios gratuitos.