This is the Linux app named Large Concept Model whose latest release can be downloaded as large_concept_modelsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Large Concept Model with OnWorks for free.
Siga estas instrucciones para ejecutar esta aplicación:
- 1. Descargue esta aplicación en su PC.
- 2. Ingrese en nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.
- 3. Cargue esta aplicación en dicho administrador de archivos.
- 4. Inicie el emulador en línea OnWorks Linux o Windows en línea o el emulador en línea MACOS desde este sitio web.
- 5. Desde el SO OnWorks Linux que acaba de iniciar, vaya a nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.
- 6. Descarga la aplicación, instálala y ejecútala.
SCREENSHOTS
Ad
Modelo de concepto grande
DESCRIPCIÓN
Large Concept Model is a research codebase centered on concept-centric representation learning at scale, aiming to capture shared structure across many categories and modalities. It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically from large image–text or weakly supervised corpora. It includes utilities to build concept vocabularies, map supervision signals to those vocabularies, and measure zero-shot or few-shot generalization. Probing tools help diagnose what the model knows—e.g., attribute recognition, relation understanding, or compositionality—so you can iterate on data and objectives. The design is modular, making it straightforward to swap backbones, change objectives, or integrate retrieval components.
Caracteristicas
- Concept-centric training pipelines with modular backbones and objectives
- Data utilities to build vocabularies, map supervision, and handle weak labels
- Probing and evaluation for attributes, relations, and compositionality
- Zero-shot and few-shot evaluation harnesses for transfer studies
- Retrieval and grounding helpers to connect concepts to examples
- Configurable recipes to scale from small runs to web-scale corpora
Lenguaje de programación
Python
Categorías
This is an application that can also be fetched from https://sourceforge.net/projects/large-concept-model.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.