This is the Windows app named Multimodal whose latest release can be downloaded as multimodalv2025.10.06.00sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Multimodal with OnWorks for free.
Siga estas instrucciones para ejecutar esta aplicación:
- 1. Descargue esta aplicación en su PC.
- 2. Ingrese en nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.
- 3. Cargue esta aplicación en dicho administrador de archivos.
- 4. Inicie cualquier emulador en línea de OS OnWorks desde este sitio web, pero mejor emulador en línea de Windows.
- 5. Desde el sistema operativo OnWorks Windows que acaba de iniciar, vaya a nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.
- 6. Descarga la aplicación e instálala.
- 7. Descargue Wine desde los repositorios de software de sus distribuciones de Linux. Una vez instalada, puede hacer doble clic en la aplicación para ejecutarla con Wine. También puedes probar PlayOnLinux, una elegante interfaz sobre Wine que te ayudará a instalar programas y juegos populares de Windows.
Wine es una forma de ejecutar software de Windows en Linux, pero no requiere Windows. Wine es una capa de compatibilidad de Windows de código abierto que puede ejecutar programas de Windows directamente en cualquier escritorio de Linux. Esencialmente, Wine está tratando de volver a implementar una cantidad suficiente de Windows desde cero para poder ejecutar todas esas aplicaciones de Windows sin necesidad de Windows.
SCREENSHOTS
Ad
Multimodal
DESCRIPCIÓN
This project, also known as TorchMultimodal, is a PyTorch library for building, training, and experimenting with multimodal, multi-task models at scale. The library provides modular building blocks such as encoders, fusion modules, loss functions, and transformations that support combining modalities (vision, text, audio, etc.) in unified architectures. It includes a collection of ready model classes—like ALBEF, CLIP, BLIP-2, COCA, FLAVA, MDETR, and Omnivore—that serve as reference implementations you can adopt or adapt. The design emphasizes composability: you can mix and match encoder, fusion, and decoder components rather than starting from monolithic models. The repository also includes example scripts and datasets for common multimodal tasks (e.g. retrieval, visual question answering, grounding) so you can test and compare models end to end. Installation supports both CPU and CUDA, and the codebase is versioned, tested, and maintained.
Caracteristicas
- Modular encoders, fusion layers, and loss modules for multimodal architectures
- Reference model implementations (ALBEF, CLIP, BLIP-2, FLAVA, MDETR, etc.)
- Example pipelines for tasks like VQA, retrieval, grounding, and multi-task learning
- Flexible fusion strategies: early, late, cross-attention, etc.
- Transform utilities for modality preprocessing and alignment
- Support for CPU and GPU setups, with a versioned, tested codebase
Lenguaje de programación
Python
Categorías
This is an application that can also be fetched from https://sourceforge.net/projects/multimodal.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.