This is the Linux app named LLM101n whose latest release can be downloaded as LLM101nsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named LLM101n with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
LLM101n
DESCRIPTION
LLM101n is an educational repository that walks you through building and understanding large language models from first principles. It emphasizes intuition and hands-on implementation, guiding you from tokenization and embeddings to attention, transformer blocks, and sampling. The materials favor compact, readable code and incremental steps, so learners can verify each concept before moving on. You’ll see how data pipelines, batching, masking, and positional encodings fit together to train a small GPT-style model end to end. The repo often complements explanations with runnable notebooks or scripts, encouraging experimentation and modification. By the end, the focus is less on polishing a production system and more on internalizing how LLM components interact to produce coherent text.
Fonctionnement
- Step-by-step build of a GPT-style transformer from scratch
- Clear coverage of tokenization, embeddings, attention, and MLP blocks
- Runnable code and exercises for experiential learning
- Demonstrations of batching, masking, and positional encodings
- Training and sampling loops you can inspect and modify
- Emphasis on readability and conceptual understanding over framework magic
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/llm101n.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
