This is the Linux app named NeuralOperators.jl whose latest release can be downloaded as v0.6.0sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named NeuralOperators.jl with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
NeuralOperators.jl
DESCRIPTION
Neural operator is a novel deep learning architecture. It learns an operator, which is a mapping between infinite-dimensional function spaces. It can be used to resolve partial differential equations (PDE). Instead of solving by finite element method, a PDE problem can be resolved by training a neural network to learn an operator mapping from infinite-dimensional space (u, t) to infinite-dimensional space f(u, t). Neural operator learns a continuous function between two continuous function spaces. The kernel can be trained on different geometry, which is learned from a graph. Fourier neural operator learns a neural operator with Dirichlet kernel to form a Fourier transformation. It performs Fourier transformation across infinite-dimensional function spaces and learns better than neural operators. Markov neural operator learns a neural operator with Fourier operators.
Features
- Fourier Neural Operator
- Exemples disponibles
- Documents disponibles
- Markov neural operator learns a neural operator with Fourier operators
- DeepONet operator (Deep Operator Network) learns a neural operator
- You can again specify loss, optimization and training parameters just as you would for a simple neural network with Flux
Langage de programmation
Julia
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/neuraloperators-jl.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.