This is the Linux app named PrettyTensor whose latest release can be downloaded as prettytensorTF_0.12.0rc0sourcecode.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named PrettyTensor with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
PrettyTensor
DESCRIPTION
Pretty Tensor is a high-level API built on top of TensorFlow that simplifies the process of creating and managing deep learning models. It wraps TensorFlow tensors in a chainable object syntax, allowing developers to build multi-layer neural networks with concise and readable code. Pretty Tensor preserves full compatibility with TensorFlow’s core functionality while providing syntactic sugar for defining complex architectures such as convolutional and recurrent networks. The library’s design emphasizes flexibility and modularity, supporting advanced features like default scopes, parameter templates, and variable reuse. It also allows easy integration with custom operations and third-party libraries, making it ideal for both research experimentation and production-grade modeling. By combining TensorFlow’s power with an intuitive builder-style API, Pretty Tensor accelerates model development without sacrificing transparency or control.
Comment ça marche
- Provides a chainable object syntax for easily defining neural network layers
- Fully compatible with standard TensorFlow operations and idioms
- Supports reusable defaults and scoped parameter sharing for cleaner models
- Enables simple creation of custom layers and operations using decorators
- Includes built-in templates for recurrent structures like LSTMs and GRUs
- Offers sequential mode and subdivision tools for complex network topologies
Langage de programmation
Python, shell Unix
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/prettytensor.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.