This is the Linux app named Synthetic Data Kit whose latest release can be downloaded as synthetic-data-kitsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Synthetic Data Kit with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
Kit de données synthétiques
DESCRIPTION
Synthetic Data Kit is a CLI-centric toolkit for generating high-quality synthetic datasets to fine-tune Llama models, with an emphasis on producing reasoning traces and QA pairs that line up with modern instruction-tuning formats. It ships an opinionated, modular workflow that covers ingesting heterogeneous sources (documents, transcripts), prompting models to create labeled examples, and exporting to fine-tuning schemas with minimal glue code. The kit’s design goal is to shorten the “data prep” bottleneck by turning dataset creation into a repeatable pipeline rather than ad-hoc notebooks. It supports generation of rationales/chain-of-thought variants, configurable sampling, and guardrails so outputs meet format constraints and quality checks. Examples and guides show how to target task-specific behaviors like tool use or step-by-step reasoning, then save directly into training-ready files.
Comment ça marche
- Four-stage CLI pipeline from ingest to export
- Generation of QA pairs and reasoning traces
- Configurable prompting, sampling, and filters
- Training-ready output formats for fine-tuning
- Quality checks and schema validation
- Examples targeting task-specific reasoning
Langage de programmation
Python
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/synthetic-data-kit.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.