This is the Linux app named MaskFormer whose latest release can be downloaded as MaskFormersourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named MaskFormer with OnWorks for free.
इस ऐप को चलाने के लिए इन निर्देशों का पालन करें:
- 1. इस एप्लिकेशन को अपने पीसी में डाउनलोड करें।
- 2. हमारे फ़ाइल प्रबंधक में https://www.onworks.net/myfiles.php?username=XXXXX उस उपयोगकर्ता नाम के साथ दर्ज करें जो आप चाहते हैं।
- 3. इस एप्लिकेशन को ऐसे फाइल मैनेजर में अपलोड करें।
- 4. इस वेबसाइट से ऑनवर्क्स लिनक्स ऑनलाइन या विंडोज ऑनलाइन एमुलेटर या मैकोज़ ऑनलाइन एमुलेटर शुरू करें।
- 5. ऑनवर्क्स लिनक्स ओएस से आपने अभी शुरुआत की है, हमारे फाइल मैनेजर को https://www.onworks.net/myfiles.php?username=XXXXX उस यूजरनेम के साथ जाएं जो आप चाहते हैं।
- 6. एप्लिकेशन डाउनलोड करें, इसे इंस्टॉल करें और इसे चलाएं।
मास्कफॉर्मर
Ad
वर्णन
MaskFormer is a unified framework for image segmentation developed by Facebook Research, designed to bridge the gap between semantic, instance, and panoptic segmentation within a single architecture. Unlike traditional segmentation pipelines that treat these tasks separately, MaskFormer reformulates segmentation as a mask classification problem, enabling a consistent and efficient approach across multiple segmentation domains. Built on top of Detectron2, it supports a wide range of datasets including ADE20K, Cityscapes, COCO-Stuff, and Mapillary Vistas, and provides pretrained baselines for each. The model achieves strong performance and scalability while simplifying training and evaluation workflows. Its successor, Mask2Former, extends the same meta-architecture to achieve state-of-the-art results across all major segmentation benchmarks. MaskFormer’s modular design, dataset integration, and compatibility with existing Detectron2 models make it an essential research tool.
विशेषताएं
- Unified architecture for semantic, instance, and panoptic segmentation
- Built on Detectron2 with full compatibility across models and datasets
- Supports ADE20K, Cityscapes, COCO-Stuff, and Mapillary Vistas datasets
- Reformulates segmentation as a mask classification task for efficiency
- Includes pretrained baselines and a comprehensive model zoo
- Foundation for Mask2Former, achieving state-of-the-art segmentation results
प्रोग्रामिंग भाषा
अजगर
श्रेणियाँ
This is an application that can also be fetched from https://sourceforge.net/projects/maskformer.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.