GoGPT Best VPN GoSearch

ऑनवर्क्स फ़ेविकॉन

Theseus download for Windows

Free download Theseus Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named Theseus whose latest release can be downloaded as 0.2.2sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Theseus with OnWorks for free.

इस ऐप को चलाने के लिए इन निर्देशों का पालन करें:

- 1. इस एप्लिकेशन को अपने पीसी में डाउनलोड करें।

- 2. हमारे फ़ाइल प्रबंधक में https://www.onworks.net/myfiles.php?username=XXXXX उस उपयोगकर्ता नाम के साथ दर्ज करें जो आप चाहते हैं।

- 3. इस एप्लिकेशन को ऐसे फाइल मैनेजर में अपलोड करें।

- 4. इस वेबसाइट से कोई भी ओएस ऑनवर्क्स ऑनलाइन एमुलेटर शुरू करें, लेकिन बेहतर विंडोज ऑनलाइन एमुलेटर।

- 5. ऑनवर्क्स विंडोज ओएस से आपने अभी शुरुआत की है, हमारे फाइल मैनेजर को https://www.onworks.net/myfiles.php?username=XXXXX उस यूजरनेम के साथ जाएं जो आप चाहते हैं।

- 6. एप्लिकेशन डाउनलोड करें और इसे इंस्टॉल करें।

- 7. अपने Linux वितरण सॉफ़्टवेयर रिपॉजिटरी से वाइन डाउनलोड करें। एक बार इंस्टॉल हो जाने पर, आप ऐप को वाइन के साथ चलाने के लिए डबल-क्लिक कर सकते हैं। आप PlayOnLinux को भी आज़मा सकते हैं, जो वाइन पर एक फैंसी इंटरफ़ेस है जो आपको लोकप्रिय विंडोज़ प्रोग्राम और गेम इंस्टॉल करने में मदद करेगा।

वाइन लिनक्स पर विंडोज सॉफ्टवेयर चलाने का एक तरीका है, लेकिन विंडोज की आवश्यकता नहीं है। वाइन एक ओपन-सोर्स विंडोज संगतता परत है जो किसी भी लिनक्स डेस्कटॉप पर सीधे विंडोज प्रोग्राम चला सकती है। अनिवार्य रूप से, वाइन खरोंच से पर्याप्त विंडोज़ को फिर से लागू करने की कोशिश कर रहा है ताकि वह उन सभी विंडोज़ अनुप्रयोगों को वास्तव में विंडोज़ की आवश्यकता के बिना चला सके।

स्क्रीनशॉट

Ad


Theseus


वर्णन

Theseus is a library for differentiable nonlinear optimization that lets you embed solvers like Gauss-Newton or Levenberg–Marquardt inside PyTorch models. Problems are expressed as factor graphs with variables on manifolds (e.g., SE(3), SO(3)), so classical robotics and vision tasks—bundle adjustment, pose graph optimization, hand–eye calibration—can be written succinctly and solved efficiently. Because solves are differentiable, you can backpropagate through optimization to learn cost weights, feature extractors, or initialization networks end-to-end. The implementation supports batched optimization on GPU, robust losses, damping strategies, and custom factors, making it practical for real-time systems. Helper packages provide geometry primitives and utilities for composing priors, relative constraints, and measurement models. Theseus bridges the gap between classical optimization and deep learning, enabling hybrid systems that learn components.



विशेषताएं

  • Differentiable Gauss-Newton and Levenberg–Marquardt solvers in PyTorch
  • Factor-graph API with manifold variables like SE(3) and SO(3)
  • Batched, GPU-accelerated solves with robust loss functions
  • Autograd support to learn costs, features, or initializations end-to-end
  • Geometry helpers and reusable factors for SLAM and bundle adjustment
  • Extensible design for custom variables, factors, and damping policies


प्रोग्रामिंग भाषा

अजगर


श्रेणियाँ

पुस्तकालय

This is an application that can also be fetched from https://sourceforge.net/projects/theseus.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


फ्री सर्वर और वर्कस्टेशन

विंडोज और लाइनेक्स एप डाउनलोड करें

लिनक्स कमांड

Ad




×
विज्ञापन
❤️यहां खरीदारी करें, बुक करें या खरीदें - कोई शुल्क नहीं, इससे सेवाएं निःशुल्क बनी रहती हैं।