GoGPT Best VPN GoSearch

favorit OnWorks

benchm-ml download for Windows

Free download benchm-ml Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named benchm-ml whose latest release can be downloaded as benchm-mlsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named benchm-ml with OnWorks for free.

Ikuti petunjuk ini untuk menjalankan aplikasi ini:

- 1. Download aplikasi ini di PC Anda.

- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.

- 3. Upload aplikasi ini di filemanager tersebut.

- 4. Mulai emulator online OS OnWorks apa pun dari situs web ini, tetapi emulator online Windows yang lebih baik.

- 5. Dari OS Windows OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.

- 6. Unduh aplikasi dan instal.

- 7. Unduh Wine dari repositori perangkat lunak distribusi Linux Anda. Setelah terinstal, Anda kemudian dapat mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga dapat mencoba PlayOnLinux, antarmuka mewah di atas Wine yang akan membantu Anda menginstal program dan game Windows populer.

Wine adalah cara untuk menjalankan perangkat lunak Windows di Linux, tetapi tidak memerlukan Windows. Wine adalah lapisan kompatibilitas Windows sumber terbuka yang dapat menjalankan program Windows secara langsung di desktop Linux apa pun. Pada dasarnya, Wine mencoba untuk mengimplementasikan kembali Windows dari awal sehingga dapat menjalankan semua aplikasi Windows tersebut tanpa benar-benar membutuhkan Windows.

Tangkapan layar

Ad


bangku-ml


DESKRIPSI

This repository is designed to provide a minimal benchmark framework comparing commonly used machine learning libraries in terms of scalability, speed, and classification accuracy. The focus is on binary classification tasks without missing data, where inputs can be numeric or categorical (after one-hot encoding). It targets large scale settings by varying the number of observations (n) up to millions and the number of features (after expansion) to about a thousand, to stress test different implementations. The benchmarks cover algorithms like logistic regression, random forest, gradient boosting, and deep neural networks, and they compare across toolkits such as scikit-learn, R packages, xgboost, H2O, Spark MLlib, etc. The repository is structured in logical folders (e.g. “1-linear”, “2-rf”, “3-boosting”, “4-DL”) each corresponding to algorithm categories.



Fitur

  • Comparative benchmarks across ML toolkits (scikit-learn, R, H2O, xgboost, Spark MLlib)
  • Algorithm coverage: logistic regression, random forests, boosting, deep neural nets
  • Scalable testing with large n (e.g. 10K → 10M) and p (~1K)
  • Synthetic data generation and real dataset integration (e.g. Higgs)
  • Structured folder organization by algorithm type
  • Runtime, memory, and accuracy measurement tools to compare implementations


Bahasa Pemrograman

R


KATEGORI

perpustakaan

This is an application that can also be fetched from https://sourceforge.net/projects/benchm-ml.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Server & Workstation Gratis

Unduh aplikasi Windows & Linux

Perintah Linux

Ad




×
iklan
❤️Berbelanja, pesan, atau beli di sini — tanpa biaya, membantu menjaga layanan tetap gratis.