GoGPT Best VPN GoSearch

Favicon di OnWorks

Active Learning download for Windows

Free download Active Learning Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named Active Learning whose latest release can be downloaded as active-learningsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Active Learning with OnWorks for free.

Segui queste istruzioni per eseguire questa app:

- 1. Scaricata questa applicazione sul tuo PC.

- 2. Entra nel nostro file manager https://www.onworks.net/myfiles.php?username=XXXXX con il nome utente che desideri.

- 3. Carica questa applicazione in tale file manager.

- 4. Avvia qualsiasi emulatore online OS OnWorks da questo sito Web, ma migliore emulatore online Windows.

- 5. Dal sistema operativo OnWorks Windows che hai appena avviato, vai al nostro file manager https://www.onworks.net/myfiles.php?username=XXXXX con il nome utente che desideri.

- 6. Scarica l'applicazione e installala.

- 7. Scarica Wine dai repository software delle tue distribuzioni Linux. Una volta installato, puoi quindi fare doppio clic sull'app per eseguirli con Wine. Puoi anche provare PlayOnLinux, un'interfaccia fantasiosa su Wine che ti aiuterà a installare programmi e giochi Windows popolari.

Wine è un modo per eseguire il software Windows su Linux, ma senza Windows richiesto. Wine è un livello di compatibilità Windows open source in grado di eseguire programmi Windows direttamente su qualsiasi desktop Linux. Essenzialmente, Wine sta cercando di re-implementare abbastanza Windows da zero in modo che possa eseguire tutte quelle applicazioni Windows senza effettivamente bisogno di Windows.

Apprendimento attivo


Ad


DESCRIZIONE

Active Learning is a Python-based research framework developed by Google for experimenting with and benchmarking various active learning algorithms. It provides modular tools for running reproducible experiments across different datasets, sampling strategies, and machine learning models. The system allows researchers to study how models can improve labeling efficiency by selectively querying the most informative data points rather than relying on uniformly sampled training sets. The main experiment runner (run_experiment.py) supports a wide range of configurations, including batch sizes, dataset subsets, model selection, and data preprocessing options. It includes several established active learning strategies such as uncertainty sampling, k-center greedy selection, and bandit-based methods, while also allowing for custom algorithm implementations. The framework integrates with both classical machine learning models (SVM, logistic regression) and neural networks.



Caratteristiche

  • Modular experimentation framework for active learning research
  • Supports multiple datasets and models including SVMs, logistic regression, and CNNs
  • Implements a variety of active learning strategies such as margin sampling and k-center greedy
  • Allows flexible configuration of parameters such as batch size, warm start ratio, and noise control
  • Easy integration of new models and sampling methods through an extensible API
  • Provides comprehensive benchmarking and analysis tools for experimental comparison


Linguaggio di programmazione

Python


Categorie

Algoritmi

This is an application that can also be fetched from https://sourceforge.net/projects/active-learning.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Server e workstation gratuiti

Scarica app per Windows e Linux

Comandi Linux

Ad




×
Cookie per pubblicità
❤️Fai acquisti, prenota o acquista qui: nessun costo, aiuta a mantenere i servizi gratuiti.