This is the Windows app named Active Learning whose latest release can be downloaded as active-learningsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Active Learning with OnWorks for free.
בצע את ההוראות הבאות כדי להפעיל את האפליקציה הזו:
- 1. הורד את היישום הזה למחשב שלך.
- 2. הזן במנהל הקבצים שלנו https://www.onworks.net/myfiles.php?username=XXXXX עם שם המשתמש שאתה רוצה.
- 3. העלה את היישום הזה במנהל קבצים כזה.
- 4. הפעל כל אמולטור מקוון של OS OnWorks מאתר זה, אך עדיף אמולטור מקוון של Windows.
- 5. ממערכת ההפעלה OnWorks Windows שזה עתה התחלת, עבור אל מנהל הקבצים שלנו https://www.onworks.net/myfiles.php?username=XXXXX עם שם המשתמש הרצוי.
- 6. הורד את האפליקציה והתקן אותה.
- 7. הורד את Wine ממאגרי התוכנה שלך להפצות לינוקס. לאחר ההתקנה, תוכל ללחוץ פעמיים על האפליקציה כדי להפעיל אותם עם Wine. אתה יכול גם לנסות את PlayOnLinux, ממשק מפואר מעל Wine שיעזור לך להתקין תוכניות ומשחקים פופולריים של Windows.
Wine היא דרך להפעיל תוכנת Windows על לינוקס, אך ללא צורך ב-Windows. Wine היא שכבת תאימות של Windows בקוד פתוח שיכולה להריץ תוכניות Windows ישירות על כל שולחן עבודה של לינוקס. בעיקרו של דבר, Wine מנסה להטמיע מחדש מספיק של Windows מאפס כדי שהוא יוכל להריץ את כל יישומי Windows מבלי להזדקק ל-Windows.
למידה פעילה
Ad
תיאור
Active Learning is a Python-based research framework developed by Google for experimenting with and benchmarking various active learning algorithms. It provides modular tools for running reproducible experiments across different datasets, sampling strategies, and machine learning models. The system allows researchers to study how models can improve labeling efficiency by selectively querying the most informative data points rather than relying on uniformly sampled training sets. The main experiment runner (run_experiment.py) supports a wide range of configurations, including batch sizes, dataset subsets, model selection, and data preprocessing options. It includes several established active learning strategies such as uncertainty sampling, k-center greedy selection, and bandit-based methods, while also allowing for custom algorithm implementations. The framework integrates with both classical machine learning models (SVM, logistic regression) and neural networks.
תכונות
- Modular experimentation framework for active learning research
- Supports multiple datasets and models including SVMs, logistic regression, and CNNs
- Implements a variety of active learning strategies such as margin sampling and k-center greedy
- Allows flexible configuration of parameters such as batch size, warm start ratio, and noise control
- Easy integration of new models and sampling methods through an extensible API
- Provides comprehensive benchmarking and analysis tools for experimental comparison
שפת תכנות
פיתון
כל הקטגוריות
This is an application that can also be fetched from https://sourceforge.net/projects/active-learning.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.