This is the Windows app named Consistency Models whose latest release can be downloaded as consistency_modelssourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Consistency Models with OnWorks for free.
このアプリを実行するには、次の手順に従ってください。
-1。このアプリケーションをPCにダウンロードしました。
--2。ファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXに必要なユーザー名を入力します。
-3。このアプリケーションをそのようなファイルマネージャにアップロードします。
-4。このWebサイトからOSOnWorksオンラインエミュレーターを起動しますが、Windowsオンラインエミュレーターの方が優れています。
-5。起動したばかりのOnWorksWindows OSから、必要なユーザー名でファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXにアクセスします。
-6。アプリケーションをダウンロードしてインストールします。
-7.LinuxディストリビューションソフトウェアリポジトリからWineをダウンロードします。 インストールしたら、アプリをダブルクリックして、Wineで実行できます。 また、人気のあるWindowsプログラムやゲームのインストールに役立つWine上の豪華なインターフェイスであるPlayOnLinuxを試すこともできます。
WineはLinux上でWindowsソフトウェアを実行する方法ですが、Windowsは必要ありません。 Wineは、任意のLinuxデスクトップでWindowsプログラムを直接実行できるオープンソースのWindows互換性レイヤーです。 基本的に、Wineは、実際にWindowsを必要とせずに、これらすべてのWindowsアプリケーションを実行できるように、十分な数のWindowsを最初から再実装しようとしています。
スクリーンショットは
Ad
一貫性モデル
DESCRIPTION
consistency_models is the repository for Consistency Models, a new family of generative models introduced by OpenAI that aim to generate high-quality samples by mapping noise directly into data — circumventing the need for lengthy diffusion chains. It builds on and extends diffusion model frameworks (e.g. based on the guided-diffusion codebase), adding techniques like consistency distillation and consistency training to enable fast, often one-step, sample generation. The repo is implemented in PyTorch and includes support for large-scale experiments on datasets like ImageNet-64 and LSUN variants. It also contains checkpointed models, evaluation scripts, and variants of sampling / editing algorithms described in the paper. Because consistency models reduce the number of inference steps, they are promising for real-time or low-latency generative systems.
オプション
- Direct noise → data mapping for one-step or few-step generation
- Implementation of consistency distillation and consistency training
- Support for sampling and editing algorithms (image editing, interpolation)
- Checkpoints and evaluation scripts for datasets like ImageNet and LSUN
- Modular PyTorch architecture built over earlier diffusion frameworks
- Model cards and documentation for intended use, limitations, and benchmarking
プログラミング言語
Python
カテゴリー
This is an application that can also be fetched from https://sourceforge.net/projects/consistency-models.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.