This is the Linux app named End-to-End Negotiator whose latest release can be downloaded as end-to-end-negotiatorsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named End-to-End Negotiator with OnWorks for free.
이 앱을 실행하려면 다음 지침을 따르세요.
- 1. 이 애플리케이션을 PC에 다운로드했습니다.
- 2. 파일 관리자 https://www.onworks.net/myfiles.php?username=XXXXX에 원하는 사용자 이름을 입력합니다.
- 3. 이러한 파일 관리자에서 이 응용 프로그램을 업로드합니다.
- 4. 이 웹사이트에서 OnWorks Linux 온라인 또는 Windows 온라인 에뮬레이터 또는 MACOS 온라인 에뮬레이터를 시작합니다.
- 5. 방금 시작한 OnWorks Linux OS에서 원하는 사용자 이름으로 파일 관리자 https://www.onworks.net/myfiles.php?username=XXXXX로 이동합니다.
- 6. 응용 프로그램을 다운로드하여 설치하고 실행합니다.
스크린 샷
Ad
엔드투엔드 협상자
기술
End-to-End Negotiator is a PyTorch-based research framework developed by Facebook AI Research to train neural agents capable of conducting strategic negotiations in natural language. The project implements the models presented in two key papers: “Deal or No Deal? End-to-End Learning for Negotiation Dialogues” and “Hierarchical Text Generation and Planning for Strategic Dialogue”. It enables agents to plan, reason, and communicate effectively to maximize outcomes in multi-turn negotiations over shared resources. The framework provides code for both supervised learning (training from human dialogue data) and reinforcement learning (via self-play and rollout-based planning). It introduces a hierarchical latent model, where high-level intents are first clustered and then translated into coherent language, improving dialogue diversity and goal consistency. The repository also includes the Negotiate dataset, comprising over 5,800 dialogues across 2,200 unique scenarios.
기능
- Trains neural agents for natural language negotiation and decision-making
- Includes supervised and reinforcement learning with self-play capability
- Implements hierarchical intent-based planning for dialogue generation
- Provides multiple model architectures: baseline RNN, latent clustering, and full hierarchical models
- Bundled with a negotiation dialogue dataset of 5,800 human-collected examples
- Tools for simulating agent-vs-agent negotiations and analyzing negotiation outcomes
프로그래밍 언어
Python
카테고리
This is an application that can also be fetched from https://sourceforge.net/projects/end-to-end-negotiator.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.