This is the Windows app named Denoiser whose latest release can be downloaded as denoiserv0.1.4sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Denoiser with OnWorks for free.
ປະຕິບັດຕາມຄໍາແນະນໍາເຫຼົ່ານີ້ເພື່ອດໍາເນີນການ app ນີ້:
- 1. ດາວໂຫຼດຄໍາຮ້ອງສະຫມັກນີ້ໃນ PC ຂອງທ່ານ.
- 2. ໃສ່ໃນຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.
- 3. ອັບໂຫລດແອັບພລິເຄຊັນນີ້ຢູ່ໃນຕົວຈັດການໄຟລ໌ດັ່ງກ່າວ.
- 4. ເລີ່ມ emulator ອອນ ໄລ ນ ໌ OS OnWorks ຈາກ ເວັບ ໄຊ ທ ໌ ນີ້, ແຕ່ ດີກ ວ່າ Windows ອອນ ໄລ ນ ໌ emulator.
- 5. ຈາກ OnWorks Windows OS ທີ່ເຈົ້າຫາກໍ່ເລີ່ມຕົ້ນ, ໄປທີ່ຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.
- 6. ດາວນ໌ໂຫລດຄໍາຮ້ອງສະຫມັກແລະຕິດຕັ້ງມັນ.
- 7. ດາວໂຫລດ Wine ຈາກບ່ອນເກັບມ້ຽນຊອບແວການແຈກຢາຍ Linux ຂອງທ່ານ. ເມື່ອຕິດຕັ້ງແລ້ວ, ທ່ານສາມາດຄລິກສອງຄັ້ງ app ເພື່ອດໍາເນີນການໃຫ້ເຂົາເຈົ້າກັບ Wine. ນອກນັ້ນທ່ານຍັງສາມາດລອງ PlayOnLinux, ການໂຕ້ຕອບທີ່ແປກປະຫຼາດໃນໄລຍະ Wine ທີ່ຈະຊ່ວຍໃຫ້ທ່ານຕິດຕັ້ງໂປລແກລມ Windows ແລະເກມທີ່ນິຍົມ.
ເຫຼົ້າແວງເປັນວິທີການແລ່ນຊອບແວ Windows ໃນ Linux, ແຕ່ບໍ່ມີ Windows ທີ່ຕ້ອງການ. ເຫຼົ້າແວງແມ່ນຊັ້ນຄວາມເຂົ້າກັນໄດ້ຂອງ Windows ແຫຼ່ງເປີດທີ່ສາມາດເອີ້ນໃຊ້ໂຄງການ Windows ໂດຍກົງໃນ desktop Linux ໃດກໍໄດ້. ໂດຍພື້ນຖານແລ້ວ, Wine ກໍາລັງພະຍາຍາມປະຕິບັດໃຫມ່ຢ່າງພຽງພໍຂອງ Windows ຕັ້ງແຕ່ເລີ່ມຕົ້ນເພື່ອໃຫ້ມັນສາມາດດໍາເນີນການຄໍາຮ້ອງສະຫມັກ Windows ທັງຫມົດໄດ້ໂດຍບໍ່ຕ້ອງໃຊ້ Windows.
ໜ້າ ຈໍ
Ad
Denoiser
ລາຍລະອຽດ
Denoiser is a real-time speech enhancement model operating directly on raw waveforms, designed to clean noisy audio while running efficiently on CPU. It uses a causal encoder-decoder architecture with skip connections, optimized with losses defined both in the time domain and frequency domain to better suppress noise while preserving speech. Unlike models that operate on spectrograms alone, this design enables lower latency and coherent waveform output. The implementation includes data augmentation techniques applied to the raw waveforms (e.g. noise mixing, reverberation) to improve model robustness and generalization to diverse noise types. The project supports both offline denoising (batch inference) and live audio processing (e.g. via loopback audio interfaces), making it practical for real-time use in calls or recording. The codebase includes training and evaluation scripts, configuration management via Hydra, and pretrained models on standard noise datasets.
ຄຸນລັກສະນະ
- Causal waveform-domain speech enhancement (no spectral inversion)
- Encoder-decoder architecture with skip connections for high fidelity
- Combined time-domain and frequency-domain loss optimization
- Raw waveform data augmentation to boost robustness against noise/reverb
- Support for live audio processing with low latency
- Training/evaluation scripts with pretrained models and config pipeline
ພາສາການຂຽນໂປຣແກຣມ
Python
ປະເພດ
This is an application that can also be fetched from https://sourceforge.net/projects/denoiser.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.