This is the Windows app named Higher whose latest release can be downloaded as higherv0.2.1sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Higher with OnWorks for free.
Ikut arahan ini untuk menjalankan apl ini:
- 1. Memuat turun aplikasi ini dalam PC anda.
- 2. Masukkan dalam pengurus fail kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang anda mahukan.
- 3. Muat naik aplikasi ini dalam pengurus filem tersebut.
- 4. Mulakan mana-mana emulator dalam talian OS OnWorks daripada tapak web ini, tetapi emulator dalam talian Windows yang lebih baik.
- 5. Daripada OS Windows OnWorks yang baru anda mulakan, pergi ke pengurus fail kami https://www.onworks.net/myfiles.php?username=XXXX dengan nama pengguna yang anda mahukan.
- 6. Muat turun aplikasi dan pasangnya.
- 7. Muat turun Wine dari repositori perisian pengedaran Linux anda. Setelah dipasang, anda kemudian boleh mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga boleh mencuba PlayOnLinux, antara muka mewah melalui Wine yang akan membantu anda memasang program dan permainan Windows yang popular.
Wain ialah cara untuk menjalankan perisian Windows pada Linux, tetapi tanpa Windows diperlukan. Wain ialah lapisan keserasian Windows sumber terbuka yang boleh menjalankan program Windows secara langsung pada mana-mana desktop Linux. Pada asasnya, Wine cuba untuk melaksanakan semula Windows yang mencukupi dari awal supaya ia boleh menjalankan semua aplikasi Windows tersebut tanpa memerlukan Windows.
SKRIN
Ad
Tinggi
DESCRIPTION
higher is a specialized library designed to extend PyTorch’s capabilities by enabling higher-order differentiation and meta-learning through differentiable optimization loops. It allows developers and researchers to compute gradients through entire optimization processes, which is essential for tasks like meta-learning, hyperparameter optimization, and model adaptation. The library introduces utilities that convert standard torch.nn.Module instances into “stateless” functional forms, so parameter updates can be treated as differentiable operations. It also provides differentiable implementations of common optimizers like SGD and Adam, making it possible to backpropagate through an arbitrary number of inner-loop optimization steps. By offering a clear and flexible interface, higher simplifies building complex learning algorithms that require gradient tracking across multiple update levels. Its design ensures compatibility with existing PyTorch models.
Ciri-ciri
- Enables differentiable inner-loop optimization and gradient tracking through updates
- Converts torch.nn.Module models into functional, stateless forms for meta-learning
- Provides differentiable versions of standard optimizers such as Adam and SGD
- Allows unrolled optimization for higher-order gradient computation
- Easily integrates into existing PyTorch workflows with minimal modification
- Supports custom differentiable optimizers via registration and subclassing
Bahasa Pengaturcaraan
Python
Kategori
This is an application that can also be fetched from https://sourceforge.net/projects/higher.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.