This is the Windows app named ConvNeXt V2 whose latest release can be downloaded as ConvNeXt-V2sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named ConvNeXt V2 with OnWorks for free.
Volg deze instructies om deze app uit te voeren:
- 1. Download deze applicatie op uw pc.
- 2. Voer in onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX in met de gebruikersnaam die u wilt.
- 3. Upload deze applicatie in zo'n bestandsbeheerder.
- 4. Start een OS OnWorks online emulator vanaf deze website, maar een betere Windows online emulator.
- 5. Ga vanuit het OnWorks Windows-besturingssysteem dat u zojuist hebt gestart naar onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX met de gewenste gebruikersnaam.
- 6. Download de applicatie en installeer deze.
- 7. Download Wine van de softwarebronnen voor Linux-distributies. Eenmaal geïnstalleerd, kunt u vervolgens dubbelklikken op de app om ze met Wine uit te voeren. Je kunt ook PlayOnLinux proberen, een mooie interface via Wine waarmee je populaire Windows-programma's en -games kunt installeren.
Wine is een manier om Windows-software op Linux uit te voeren, maar zonder dat Windows vereist is. Wine is een open-source Windows-compatibiliteitslaag die Windows-programma's rechtstreeks op elke Linux-desktop kan uitvoeren. In wezen probeert Wine genoeg van Windows opnieuw te implementeren, zodat het al die Windows-applicaties kan draaien zonder Windows echt nodig te hebben.
SCREENSHOTS
Ad
ConvNeXt V2
PRODUCTBESCHRIJVING
ConvNeXt V2 is an evolution of the ConvNeXt architecture that co-designs convolutional networks alongside self-supervised learning. The V2 version introduces a fully convolutional masked autoencoder (FCMAE) framework where parts of the image are masked and the network reconstructs the missing content, marrying convolutional inductive bias with powerful pretraining. A key innovation is a new Global Response Normalization (GRN) layer added to the ConvNeXt backbone, which enhances feature competition across channels. The result is a convnet that competes strongly with transformer architectures on recognition benchmarks while being efficient and hardware-friendly. The repository provides official PyTorch implementations for multiple model sizes (Atto, Femto, Pico, up through Huge), conversion from JAX weights, code for pretraining/fine-tuning, and pretrained checkpoints. It supports both self-supervised pretraining and supervised fine-tuning.
Kenmerken
- Fully convolutional masked autoencoder pretraining (FCMAE)
- Global Response Normalization (GRN) to improve channel competition
- Multiple model sizes (Atto, Femto, Pico, Tiny, Base, Large, Huge)
- Support for self-supervised and supervised learning pipelines
- Pretrained checkpoints (converted from JAX) and PyTorch implementation
- Training/fine-tuning utilities and code for both pretrain and eval
Programmeertaal
Python
Categorieën
This is an application that can also be fetched from https://sourceforge.net/projects/convnext-v2.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.