OnWorks favicon

gmt-music-bmr-calc-covgp - Online in the Cloud

Run gmt-music-bmr-calc-covgp in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command gmt-music-bmr-calc-covgp that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator



gmt music bmr calc-covg - Uses calcRoiCovg.c to count covered bases per-gene for each
given tumor-normal pair of BAMs.


This document describes gmt music bmr calc-covg version 0.04 (2016-01-01 at 23:10:19)


gmt music bmr calc-covg --gene-covg-dir=? --roi-file=? --reference-sequence=? --bam-list=?
--output-dir=? [--cmd-list-file=?] [--cmd-prefix=?] [--normal-min-depth=?]
[--tumor-min-depth=?] [--min-mapq=?]

General usage:

... music bmr calc-covg \
--bam-list input_dir/bam_list \
--output-dir output_dir/ \
--reference-sequence input_dir/all_sequences.fa \
--roi-file input_dir/all_coding_exons.tsv

To create a list of commands that will allow the processing of each tumor-normal pair in
parallel with an LSF job scheduler:

... music bmr calc-covg \
--bam-list input_dir/bam_list \
--output-dir output_dir/ \
--reference-sequence input_dir/all_sequences.fa \
--roi-file input_dir/all_coding_exons.tsv \
--cmd_list_file parallelizable_commands \
--cmd_prefix bsub

In the above case, the commands printed into the output file "parallelizable_commands" can
be run in parallel. After they complete, rerun this script as printed directly below
(--cmd_list_file and --cmd_prefix have been removed) to merge the parallelized

... music bmr calc-covg \
--bam-list input_dir/bam_list \
--output-dir output_dir/ \
--reference-sequence input_dir/all_sequences.fa \
--roi-file input_dir/all_coding_exons.tsv


gene-covg-dir Text
Directory where per-sample gene coverage files are located

roi-file Text
Tab delimited list of ROIs [chr start stop gene_name] (See Description)

reference-sequence Text
Path to reference sequence in FASTA format

bam-list Text
Tab delimited list of BAM files [sample_name normal_bam tumor_bam] (See Description)

output-dir Text
Directory where output files and subdirectories will be written


cmd-list-file Text
A file to write calcRoiCovg commands to (See Description)

cmd-prefix Text
A command that submits a job to your cluster (See Description)

normal-min-depth Integer
The minimum read depth to consider a Normal BAM base as covered

tumor-min-depth Integer
The minimum read depth to consider a Tumor BAM base as covered

min-mapq Integer
The minimum mapping quality of reads to consider towards read depth counts


This script counts bases with sufficient coverage in the ROIs of each gene in the given
pairs of tumor-normal BAM files and categorizes them into - AT, CG (non-CpG), and CpG
counts. It also adds up these base-counts across all ROIs of each gene for each sample,
but covered bases that lie within overlapping ROIs are not counted more than once towards
these total counts.

By default, this script runs a C-based tool named calcRoiCovg for each sample one after
another, taking ~30 mins per sample to generate per-ROI covered base counts. If the
results of calcRoiCovg for a sample already exists in the output subdirectory roi_covgs,
re-calculation is skipped. This allows you to run your own calcRoiCovg jobs in parallel or
on multiple machines (Keep reading).

Speed things up by running calcRoiCovg jobs in parallel: If a compute cluster or multiple
machines are available, run this script twice as follows:

· Define cmd-list-file and cmd-prefix to generate a file with commands that can be
submitted to a cluster or run manually. These jobs will write per-ROI base counts in a
subdirectory roi_covgs.

· After all the parallelized calcRoiCovg jobs are completed, run this script again to
add them up and generate the final per-gene base counts in a subdirectory gene_covgs.
Remember to remove the cmd-list-file and cmd-prefix arguments or you will just be re-
creating a list of commands.


The regions of interest (ROIs) of each gene are typically regions targeted for
sequencing or are merged exon loci (from multiple transcripts) of genes with 2-bp
flanks (splice junctions). ROIs from the same chromosome must be listed adjacent to
each other in this file. This allows the underlying C-based code to run much more
efficiently and avoid re-counting bases seen in overlapping ROIs (for overall covered
base counts). For per-gene base counts, an overlapping base will be counted each time
it appears in an ROI of the same gene. To avoid this, be sure to merge together
overlapping ROIs of the same gene. BEDtools' mergeBed can help if used per gene.
The reference sequence in FASTA format. If a reference sequence index is not found
next to this file (a .fai file), it will be created.
Provide a file containing sample names and normal/tumor BAM locations for each. Use
the tab- delimited format [sample_name normal_bam tumor_bam] per line. Additional
columns like clinical data are allowed, but ignored. The sample_name must be the same
as the tumor sample names used in the MAF file (16th column, with the header
Specify an output directory where the following will be created/written: roi_covgs:
Subdirectory containing per-ROI covered base counts for each sample. gene_covgs:
Subdirectory containing per-gene covered base counts for each sample. total_covgs:
File containing the overall non-overlapping coverages per sample.
Specify a file into which a list of calcRoiCovg jobs will be written to. These can be
scheduled in parallel, and will write per-ROI covered base-counts into the output
subdirectory roi_covgs. If cmd-list-file is left unspecified, this script runs
calcRoiCovg per sample one after another, taking ~30 mins per sample, but it skips
samples whose output is already in roi_covgs.
Specify a job submission command that will be prefixed to each command in cmd-list-
file. This makes batch submission easier. Just run the cmd-list-file file as a shell
script to submit jobs. cmd-prefix is "bsub" if your cluster uses the LSF job
scheduler, or "qsub" in Torque. Add arguments as necessary. For example, "bsub -M 4GB"
sets a soft memory limit of 4GB.

Use gmt-music-bmr-calc-covgp online using onworks.net services

Free Servers & Workstations

Download Windows & Linux apps

  • 1
    Open-source tool to access Amazon S3
    file storage. S3cmd is a free command
    line tool and client for uploading,
    retrieving and managing data in Amazon
    S3 and ot...
    Download s3cmd
  • 2
    XyZerKunG ServerTool
    XyZerKunG ServerTool
    XyZerKunG ServerTool helps you to make
    your own Minecraft server and play with
    your friend for a few minutes.
    Features:Automatically create a
    Minecraft serverU...
    Download XyZerKunG ServerTool
  • 3
    Java source intended to serve as a
    nexus for teaching both mathematics and
    software solutions for computation on
    iterative equations. Public interfaces
    allow a...
    Download CalcTools
  • 4
    Rocket.Chat Desktop Client
    Rocket.Chat Desktop Client
    Rocket.Chat Desktop client is the
    official desktop app for Rocket.Chat,
    the simple but powerful open source web
    chat platform. It's tested on macOS,
    Download Rocket.Chat Desktop Client
  • 5
    OfficeFloor provides inversion of
    coupling control, with its: - dependency
    injection - continuation injection -
    thread injection For more information
    visit the...
    Download OfficeFloor
  • 6
    DivKit is an open source Server-Driven
    UI (SDUI) framework. It allows you to
    roll out server-sourced updates to
    different app versions. Also, it can be
    used fo...
    Download DivKit
  • 7
    Utility to convert between various
    subscription format. Shadowrocket users
    should use ss, ssr or v2ray as target.
    You can add &remark= to
    Telegram-liked HT...
    Download subconverter
  • More »

Linux commands