This is the Linux app named End-to-End Negotiator whose latest release can be downloaded as end-to-end-negotiatorsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named End-to-End Negotiator with OnWorks for free.
Postępuj zgodnie z tymi instrukcjami, aby uruchomić tę aplikację:
- 1. Pobrałem tę aplikację na swój komputer.
- 2. Wpisz w naszym menedżerze plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 3. Prześlij tę aplikację w takim menedżerze plików.
- 4. Uruchom emulator online OnWorks Linux lub Windows online lub emulator online MACOS z tej witryny.
- 5. W systemie operacyjnym OnWorks Linux, który właśnie uruchomiłeś, przejdź do naszego menedżera plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 6. Pobierz aplikację, zainstaluj ją i uruchom.
ZRZUTY EKRANU
Ad
Negocjator kompleksowy
OPIS
End-to-End Negotiator is a PyTorch-based research framework developed by Facebook AI Research to train neural agents capable of conducting strategic negotiations in natural language. The project implements the models presented in two key papers: “Deal or No Deal? End-to-End Learning for Negotiation Dialogues” and “Hierarchical Text Generation and Planning for Strategic Dialogue”. It enables agents to plan, reason, and communicate effectively to maximize outcomes in multi-turn negotiations over shared resources. The framework provides code for both supervised learning (training from human dialogue data) and reinforcement learning (via self-play and rollout-based planning). It introduces a hierarchical latent model, where high-level intents are first clustered and then translated into coherent language, improving dialogue diversity and goal consistency. The repository also includes the Negotiate dataset, comprising over 5,800 dialogues across 2,200 unique scenarios.
Funkcjonalności
- Trains neural agents for natural language negotiation and decision-making
- Includes supervised and reinforcement learning with self-play capability
- Implements hierarchical intent-based planning for dialogue generation
- Provides multiple model architectures: baseline RNN, latent clustering, and full hierarchical models
- Bundled with a negotiation dialogue dataset of 5,800 human-collected examples
- Tools for simulating agent-vs-agent negotiations and analyzing negotiation outcomes
Język programowania
Python
Kategorie
This is an application that can also be fetched from https://sourceforge.net/projects/end-to-end-negotiator.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.