This is the Linux app named Uncertainty Baselines whose latest release can be downloaded as uncertainty-baselinessourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Uncertainty Baselines with OnWorks for free.
Postępuj zgodnie z tymi instrukcjami, aby uruchomić tę aplikację:
- 1. Pobrałem tę aplikację na swój komputer.
- 2. Wpisz w naszym menedżerze plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 3. Prześlij tę aplikację w takim menedżerze plików.
- 4. Uruchom emulator online OnWorks Linux lub Windows online lub emulator online MACOS z tej witryny.
- 5. W systemie operacyjnym OnWorks Linux, który właśnie uruchomiłeś, przejdź do naszego menedżera plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 6. Pobierz aplikację, zainstaluj ją i uruchom.
ZRZUTY EKRANU
Ad
Linie bazowe niepewności
OPIS
Uncertainty Baselines is a collection of strong, well-documented training pipelines that make it straightforward to evaluate predictive uncertainty in modern machine learning models. Rather than offering toy scripts, it provides end-to-end recipes—data input, model architectures, training loops, evaluation metrics, and logging—so results are comparable across runs and research groups. The library spans canonical modalities and tasks, from image classification and NLP to tabular problems, with baselines that cover both deterministic and probabilistic approaches. Techniques include deep ensembles, Monte Carlo dropout, temperature scaling, stochastic variational inference, heteroscedastic heads, and out-of-distribution detection workflows. Each baseline emphasizes reproducibility: fixed seeds, standard splits, and strong metrics such as calibration error, AUROC for OOD, and accuracy under shift.
Funkcje
- End-to-end, reproducible pipelines for uncertainty evaluation
- Coverage of ensembles, MC dropout, SVI, and calibration methods
- Standardized metrics for OOD detection and calibration quality
- Baselines across vision, language, and tabular tasks
- Clear configuration files and logging for fair comparisons
- Strong defaults that can be extended for new research ideas
Język programowania
Python
Kategorie
This is an application that can also be fetched from https://sourceforge.net/projects/uncertainty-baselines.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
