This is the Windows app named DeepEP whose latest release can be downloaded as Stablereleasev1.2.1sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DeepEP with OnWorks for free.
Postępuj zgodnie z tymi instrukcjami, aby uruchomić tę aplikację:
- 1. Pobrałem tę aplikację na swój komputer.
- 2. Wpisz w naszym menedżerze plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 3. Prześlij tę aplikację w takim menedżerze plików.
- 4. Uruchom dowolny emulator online systemu operacyjnego OnWorks z tej witryny, ale lepszy emulator online systemu Windows.
- 5. W systemie operacyjnym OnWorks Windows, który właśnie uruchomiłeś, przejdź do naszego menedżera plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 6. Pobierz aplikację i zainstaluj ją.
- 7. Pobierz Wine z repozytoriów oprogramowania dystrybucji Linuksa. Po zainstalowaniu możesz dwukrotnie kliknąć aplikację, aby uruchomić ją za pomocą Wine. Możesz także wypróbować PlayOnLinux, fantazyjny interfejs w Wine, który pomoże Ci zainstalować popularne programy i gry Windows.
Wine to sposób na uruchamianie oprogramowania Windows w systemie Linux, ale bez systemu Windows. Wine to warstwa kompatybilności z systemem Windows typu open source, która może uruchamiać programy systemu Windows bezpośrednio na dowolnym pulpicie systemu Linux. Zasadniczo Wine próbuje ponownie zaimplementować system Windows od podstaw, aby mógł uruchamiać wszystkie te aplikacje Windows bez faktycznego korzystania z systemu Windows.
ZRZUTY EKRANU
Ad
DeepEP
OPIS
DeepEP is a communication library designed specifically to support Mixture-of-Experts (MoE) and expert parallelism (EP) deployments. Its core role is to implement high-throughput, low-latency all-to-all GPU communication kernels, which handle the dispatching of tokens to different experts (or shards) and then combining expert outputs back into the main data flow. Because MoE architectures require routing inputs to different experts, communication overhead can become a bottleneck — DeepEP addresses that by providing optimized GPU kernels and efficient dispatch/combining logic. The library also supports low-precision operations (such as FP8) to reduce memory and bandwidth usage during communication. DeepEP is aimed at large-scale model inference or training systems where expert parallelism is used to scale model capacity without replicating entire networks.
Funkcjonalności
- Optimized all-to-all GPU communication kernels for MoE dispatch and combine
- Tailored to expert parallelism (EP) architectures for scaling model capacity
- Support for low-precision operations (e.g. FP8) to reduce memory/bandwidth
- High throughput and low latency design (minimizing communication overhead)
- Integration potential with MoE model stacks to handle expert routing efficiently
- Focus on production-scale usage: enabling faster inference/training in MoE systems
Język programowania
Python
Kategorie
This is an application that can also be fetched from https://sourceforge.net/projects/deepep.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.