This is the Windows app named DeepCluster whose latest release can be downloaded as deepclustersourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DeepCluster with OnWorks for free.
Siga estas instruções para executar este aplicativo:
- 1. Baixe este aplicativo em seu PC.
- 2. Entre em nosso gerenciador de arquivos https://www.onworks.net/myfiles.php?username=XXXXX com o nome de usuário que você deseja.
- 3. Carregue este aplicativo em tal gerenciador de arquivos.
- 4. Inicie qualquer emulador on-line OS OnWorks a partir deste site, mas um emulador on-line melhor do Windows.
- 5. No sistema operacional OnWorks Windows que você acabou de iniciar, acesse nosso gerenciador de arquivos https://www.onworks.net/myfiles.php?username=XXXXX com o nome de usuário que deseja.
- 6. Baixe o aplicativo e instale-o.
- 7. Baixe o Wine de seus repositórios de software de distribuição Linux. Depois de instalado, você pode clicar duas vezes no aplicativo para executá-lo com o Wine. Você também pode experimentar o PlayOnLinux, uma interface sofisticada do Wine que o ajudará a instalar programas e jogos populares do Windows.
Wine é uma forma de executar software Windows no Linux, mas sem a necessidade de Windows. Wine é uma camada de compatibilidade do Windows de código aberto que pode executar programas do Windows diretamente em qualquer desktop Linux. Essencialmente, o Wine está tentando reimplementar o suficiente do Windows do zero para que possa executar todos os aplicativos do Windows sem realmente precisar do Windows.
SCREENSHOTS
Ad
DeepCluster
DESCRIÇÃO
DeepCluster is a classic self-supervised clustering-based representation learning algorithm that iteratively groups image features and uses the cluster assignments as pseudo-labels to train the network. In each round, features produced by the network are clustered (e.g. k-means), and the cluster IDs become supervision targets in the next epoch, encouraging the model to refine its representation to better separate semantic groups. This alternating “cluster & train” scheme helps the model gradually discover meaningful structure without labels. DeepCluster was one of the early successes in unsupervised visual feature learning, demonstrating that clustering-based reformulation can rival supervised baselines for many downstream tasks. The repository includes code for feature extraction, clustering, training loops, and evaluation benchmarks like linear probes. Because of its simplicity and modular design, DeepCluster has inspired many later methods.
Recursos
- Unsupervised learning via iterative clustering and pseudo-label supervision
- Alternating pipeline: cluster features → use cluster IDs to train network
- Support for k-means or other clustering algorithms in feature space
- Training and evaluation scripts for downstream tasks (classification, detection)
- Modular code to swap network architectures or clustering methods
- Baseline reference for many later self-supervised approaches
Linguagem de Programação
Python
Categorias
This is an application that can also be fetched from https://sourceforge.net/projects/deepcluster.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.