This is the Windows app named ConvNeXt V2 whose latest release can be downloaded as ConvNeXt-V2sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named ConvNeXt V2 with OnWorks for free.
Urmați aceste instrucțiuni pentru a rula această aplicație:
- 1. Ați descărcat această aplicație pe computer.
- 2. Introduceți în managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator pe care îl doriți.
- 3. Încărcați această aplicație într-un astfel de manager de fișiere.
- 4. Porniți orice emulator online OS OnWorks de pe acest site, dar mai bun emulator online Windows.
- 5. Din sistemul de operare Windows OnWorks pe care tocmai l-ați pornit, accesați managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator dorit.
- 6. Descărcați aplicația și instalați-o.
- 7. Descărcați Wine din depozitele de software ale distribuțiilor Linux. Odată instalat, puteți apoi să faceți dublu clic pe aplicație pentru a le rula cu Wine. De asemenea, puteți încerca PlayOnLinux, o interfață elegantă peste Wine, care vă va ajuta să instalați programe și jocuri populare Windows.
Wine este o modalitate de a rula software-ul Windows pe Linux, dar fără a fi necesar Windows. Wine este un strat de compatibilitate Windows open-source care poate rula programe Windows direct pe orice desktop Linux. În esență, Wine încearcă să reimplementeze suficient Windows de la zero, astfel încât să poată rula toate acele aplicații Windows fără a avea nevoie efectiv de Windows.
SCREENSHOTS
Ad
ConvNeXt V2
DESCRIERE
ConvNeXt V2 is an evolution of the ConvNeXt architecture that co-designs convolutional networks alongside self-supervised learning. The V2 version introduces a fully convolutional masked autoencoder (FCMAE) framework where parts of the image are masked and the network reconstructs the missing content, marrying convolutional inductive bias with powerful pretraining. A key innovation is a new Global Response Normalization (GRN) layer added to the ConvNeXt backbone, which enhances feature competition across channels. The result is a convnet that competes strongly with transformer architectures on recognition benchmarks while being efficient and hardware-friendly. The repository provides official PyTorch implementations for multiple model sizes (Atto, Femto, Pico, up through Huge), conversion from JAX weights, code for pretraining/fine-tuning, and pretrained checkpoints. It supports both self-supervised pretraining and supervised fine-tuning.
Categorii
- Fully convolutional masked autoencoder pretraining (FCMAE)
- Global Response Normalization (GRN) to improve channel competition
- Multiple model sizes (Atto, Femto, Pico, Tiny, Base, Large, Huge)
- Support for self-supervised and supervised learning pipelines
- Pretrained checkpoints (converted from JAX) and PyTorch implementation
- Training/fine-tuning utilities and code for both pretrain and eval
Limbaj de programare
Piton
Categorii
This is an application that can also be fetched from https://sourceforge.net/projects/convnext-v2.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.