This is the Windows app named DeepCluster whose latest release can be downloaded as deepclustersourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DeepCluster with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS
Ad
DeepCluster
DESCRIPTION
DeepCluster is a classic self-supervised clustering-based representation learning algorithm that iteratively groups image features and uses the cluster assignments as pseudo-labels to train the network. In each round, features produced by the network are clustered (e.g. k-means), and the cluster IDs become supervision targets in the next epoch, encouraging the model to refine its representation to better separate semantic groups. This alternating “cluster & train” scheme helps the model gradually discover meaningful structure without labels. DeepCluster was one of the early successes in unsupervised visual feature learning, demonstrating that clustering-based reformulation can rival supervised baselines for many downstream tasks. The repository includes code for feature extraction, clustering, training loops, and evaluation benchmarks like linear probes. Because of its simplicity and modular design, DeepCluster has inspired many later methods.
Features
- Unsupervised learning via iterative clustering and pseudo-label supervision
- Alternating pipeline: cluster features → use cluster IDs to train network
- Support for k-means or other clustering algorithms in feature space
- Training and evaluation scripts for downstream tasks (classification, detection)
- Modular code to swap network architectures or clustering methods
- Baseline reference for many later self-supervised approaches
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/deepcluster.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.