This is the Linux app named Machine Learning Cheat Sheet whose latest release can be downloaded as machine-learning-cheat-sheetsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Machine Learning Cheat Sheet with OnWorks for free.
Следуйте этим инструкциям, чтобы запустить это приложение:
- 1. Загрузил это приложение на свой компьютер.
- 2. Введите в нашем файловом менеджере https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 3. Загрузите это приложение в такой файловый менеджер.
- 4. Запустите онлайн-эмулятор OnWorks Linux или Windows или онлайн-эмулятор MACOS с этого веб-сайта.
- 5. В только что запущенной ОС OnWorks Linux перейдите в наш файловый менеджер https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 6. Скачайте приложение, установите его и запустите.
СКРИНШОТЫ
Ad
Шпаргалка по машинному обучению
ОПИСАНИЕ
This repository is a visually rich and well-organized “cheat sheet” summarizing core machine learning concepts, algorithms, formulas, and best practices. It includes summaries of supervised and unsupervised learning methods, model evaluation metrics (accuracy, precision, recall, ROC/AUC), overfitting/underfitting, regularization (L1/L2), cross-validation, feature engineering techniques, and perhaps tips for hyperparameter tuning. Each section is presented concisely, often with diagrams, formula snippets, and short explanatory notes to serve as quick reference for students, practitioners, or interview prep. The repository is ideal for those who want a compact, at-a-glance reminder of ML fundamentals without diving back into textbooks. Because the cheat sheet is meant to be portable and broadly useful, it is format-friendly (often in Markdown, PDF, or image formats) and easy to include in learning workflow or slides.
Особенности
- Compact summary of core supervised and unsupervised algorithms
- Key formulas and metrics (loss functions, ROC/AUC, confusion matrix, regularization)
- Visual diagrams illustrating model behavior or tradeoffs
- Feature engineering, validation, and hyperparameter tuning tips
- Community contributions and versioning for updates
- Multi-format availability (Markdown / PDF / image) for portability
Категории
This is an application that can also be fetched from https://sourceforge.net/projects/machine-learning-cheat.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.