This is the Windows app named DeepEP whose latest release can be downloaded as Stablereleasev1.2.1sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DeepEP with OnWorks for free.
Следуйте этим инструкциям, чтобы запустить это приложение:
- 1. Загрузил это приложение на свой компьютер.
- 2. Введите в нашем файловом менеджере https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 3. Загрузите это приложение в такой файловый менеджер.
- 4. Запустите любой онлайн-эмулятор OS OnWorks с этого сайта, но лучше онлайн-эмулятор Windows.
- 5. В только что запущенной ОС Windows OnWorks перейдите в наш файловый менеджер https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 6. Скачайте приложение и установите его.
- 7. Загрузите Wine из репозиториев программного обеспечения вашего дистрибутива Linux. После установки вы можете дважды щелкнуть приложение, чтобы запустить его с помощью Wine. Вы также можете попробовать PlayOnLinux, необычный интерфейс поверх Wine, который поможет вам установить популярные программы и игры для Windows.
Wine - это способ запустить программное обеспечение Windows в Linux, но без Windows. Wine - это уровень совместимости с Windows с открытым исходным кодом, который может запускать программы Windows непосредственно на любом рабочем столе Linux. По сути, Wine пытается заново реализовать Windows с нуля, чтобы можно было запускать все эти Windows-приложения, фактически не нуждаясь в Windows.
СКРИНШОТЫ
Ad
DeepEP
ОПИСАНИЕ
DeepEP is a communication library designed specifically to support Mixture-of-Experts (MoE) and expert parallelism (EP) deployments. Its core role is to implement high-throughput, low-latency all-to-all GPU communication kernels, which handle the dispatching of tokens to different experts (or shards) and then combining expert outputs back into the main data flow. Because MoE architectures require routing inputs to different experts, communication overhead can become a bottleneck — DeepEP addresses that by providing optimized GPU kernels and efficient dispatch/combining logic. The library also supports low-precision operations (such as FP8) to reduce memory and bandwidth usage during communication. DeepEP is aimed at large-scale model inference or training systems where expert parallelism is used to scale model capacity without replicating entire networks.
Особенности
- Optimized all-to-all GPU communication kernels for MoE dispatch and combine
- Tailored to expert parallelism (EP) architectures for scaling model capacity
- Support for low-precision operations (e.g. FP8) to reduce memory/bandwidth
- High throughput and low latency design (minimizing communication overhead)
- Integration potential with MoE model stacks to handle expert routing efficiently
- Focus on production-scale usage: enabling faster inference/training in MoE systems
Язык программирования
Питон
Категории
This is an application that can also be fetched from https://sourceforge.net/projects/deepep.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.