This is the Windows app named Active Learning whose latest release can be downloaded as active-learningsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Active Learning with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
Active Learning
Ad
DESCRIPTION
Active Learning is a Python-based research framework developed by Google for experimenting with and benchmarking various active learning algorithms. It provides modular tools for running reproducible experiments across different datasets, sampling strategies, and machine learning models. The system allows researchers to study how models can improve labeling efficiency by selectively querying the most informative data points rather than relying on uniformly sampled training sets. The main experiment runner (run_experiment.py) supports a wide range of configurations, including batch sizes, dataset subsets, model selection, and data preprocessing options. It includes several established active learning strategies such as uncertainty sampling, k-center greedy selection, and bandit-based methods, while also allowing for custom algorithm implementations. The framework integrates with both classical machine learning models (SVM, logistic regression) and neural networks.
Features
- Modular experimentation framework for active learning research
- Supports multiple datasets and models including SVMs, logistic regression, and CNNs
- Implements a variety of active learning strategies such as margin sampling and k-center greedy
- Allows flexible configuration of parameters such as batch size, warm start ratio, and noise control
- Easy integration of new models and sampling methods through an extensible API
- Provides comprehensive benchmarking and analysis tools for experimental comparison
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/active-learning.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.