EnglishFrenchSpanish

Ad


OnWorks favicon

Apache MXNet download for Windows

Free download Apache MXNet Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named Apache MXNet whose latest release can be downloaded as apache-mxnet-src-1.6.0-incubating.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Apache MXNet with OnWorks for free.

Follow these instructions in order to run this app:

- 1. Downloaded this application in your PC.

- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 3. Upload this application in such filemanager.

- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.

- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 6. Download the application and install it.

- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.

Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.

SCREENSHOTS

Ad


Apache MXNet


DESCRIPTION

Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.

Features

  • Design notes providing useful insights that can re-used by other DL projects
  • Flexible configuration for arbitrary computation graph
  • Mix and match imperative and symbolic programming to maximize flexibility and efficiency
  • Lightweight, memory efficient and portable to smart devices
  • Scales up to multi GPUs and distributed setting with auto parallelism
  • Support for Python, Scala, C++, Java, Clojure, R, Go, Javascript, Perl, Matlab, and Julia
  • Cloud-friendly and directly compatible with AWS S3, AWS Deep Learning AMI, AWS SageMaker, HDFS, and Azure


Programming Language

Python



This is an application that can also be fetched from https://sourceforge.net/projects/apache-mxnet.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Ad