This is the Linux app named End-to-End Negotiator whose latest release can be downloaded as end-to-end-negotiatorsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named End-to-End Negotiator with OnWorks for free.
Sundin ang mga tagubiling ito upang patakbuhin ang app na ito:
- 1. Na-download ang application na ito sa iyong PC.
- 2. Ipasok sa aming file manager https://www.onworks.net/myfiles.php?username=XXXXX kasama ang username na gusto mo.
- 3. I-upload ang application na ito sa naturang filemanager.
- 4. Simulan ang OnWorks Linux online o Windows online emulator o MACOS online emulator mula sa website na ito.
- 5. Mula sa OnWorks Linux OS na kasisimula mo pa lang, pumunta sa aming file manager https://www.onworks.net/myfiles.php?username=XXXX gamit ang username na gusto mo.
- 6. I-download ang application, i-install ito at patakbuhin ito.
MGA LALAKI
Ad
End-to-End Negotiator
DESCRIPTION
End-to-End Negotiator is a PyTorch-based research framework developed by Facebook AI Research to train neural agents capable of conducting strategic negotiations in natural language. The project implements the models presented in two key papers: “Deal or No Deal? End-to-End Learning for Negotiation Dialogues” and “Hierarchical Text Generation and Planning for Strategic Dialogue”. It enables agents to plan, reason, and communicate effectively to maximize outcomes in multi-turn negotiations over shared resources. The framework provides code for both supervised learning (training from human dialogue data) and reinforcement learning (via self-play and rollout-based planning). It introduces a hierarchical latent model, where high-level intents are first clustered and then translated into coherent language, improving dialogue diversity and goal consistency. The repository also includes the Negotiate dataset, comprising over 5,800 dialogues across 2,200 unique scenarios.
Mga tampok
- Trains neural agents for natural language negotiation and decision-making
- Includes supervised and reinforcement learning with self-play capability
- Implements hierarchical intent-based planning for dialogue generation
- Provides multiple model architectures: baseline RNN, latent clustering, and full hierarchical models
- Bundled with a negotiation dialogue dataset of 5,800 human-collected examples
- Tools for simulating agent-vs-agent negotiations and analyzing negotiation outcomes
Wika ng Programming
Sawa
Kategorya
This is an application that can also be fetched from https://sourceforge.net/projects/end-to-end-negotiator.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.