This is the Linux app named DiT (Diffusion Transformers) whose latest release can be downloaded as DiTsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DiT (Diffusion Transformers) with OnWorks for free.
Bu uygulamayı çalıştırmak için şu talimatları izleyin:
- 1. Bu uygulamayı PC'nize indirdiniz.
- 2. Dosya yöneticimize https://www.onworks.net/myfiles.php?username=XXXXX istediğiniz kullanıcı adını girin.
- 3. Bu uygulamayı böyle bir dosya yöneticisine yükleyin.
- 4. Bu web sitesinden OnWorks Linux çevrimiçi veya Windows çevrimiçi öykünücüsünü veya MACOS çevrimiçi öykünücüsünü başlatın.
- 5. Yeni başladığınız OnWorks Linux işletim sisteminden, istediğiniz kullanıcı adıyla https://www.onworks.net/myfiles.php?username=XXXXX dosya yöneticimize gidin.
- 6. Uygulamayı indirin, kurun ve çalıştırın.
EKRAN
Ad
DiT (Difüzyon Transformatörleri)
AÇIKLAMA
DiT (Diffusion Transformer) is a powerful architecture that applies transformer-based modeling directly to diffusion generative processes for high-quality image synthesis. Unlike CNN-based diffusion models, DiT represents the diffusion process in the latent space and processes image tokens through transformer blocks with learned positional encodings, offering scalability and superior sample quality. The model architecture parallels large language models but for image tokens—each block refines noisy latent representations toward cleaner outputs through iterative denoising steps. DiT achieves strong results on benchmarks like ImageNet and LSUN while being architecturally simple and highly modular. It supports variable resolution, conditioning on class or text embeddings, and integration with latent autoencoders (like those used in Stable Diffusion).
Özellikler
- Transformer-based architecture for diffusion image generation
- Iterative denoising with token-wise refinement and attention-based context modeling
- Operates in latent space for efficient high-resolution synthesis
- Supports conditioning on class labels or text embeddings
- Pretrained weights, training code, and visualization utilities for diffusion trajectories
- Modular design enabling easy scaling and hybrid integrations with latent autoencoders
Programlama dili
Python
Kategoriler
This is an application that can also be fetched from https://sourceforge.net/projects/dit-diffusion-transf.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.