This is the Linux app named DrQA whose latest release can be downloaded as DrQAsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DrQA with OnWorks for free.
Bu uygulamayı çalıştırmak için şu talimatları izleyin:
- 1. Bu uygulamayı PC'nize indirdiniz.
- 2. Dosya yöneticimize https://www.onworks.net/myfiles.php?username=XXXXX istediğiniz kullanıcı adını girin.
- 3. Bu uygulamayı böyle bir dosya yöneticisine yükleyin.
- 4. Bu web sitesinden OnWorks Linux çevrimiçi veya Windows çevrimiçi öykünücüsünü veya MACOS çevrimiçi öykünücüsünü başlatın.
- 5. Yeni başladığınız OnWorks Linux işletim sisteminden, istediğiniz kullanıcı adıyla https://www.onworks.net/myfiles.php?username=XXXXX dosya yöneticimize gidin.
- 6. Uygulamayı indirin, kurun ve çalıştırın.
EKRAN
Ad
DrQA
AÇIKLAMA
DrQA is an open-domain question answering system that reads large text corpora—famously Wikipedia—to answer natural language questions with extractive spans. It follows a two-stage pipeline: a fast document retriever first narrows down candidate articles, and a neural machine reader then predicts the exact answer span from those passages. The retriever relies on classic IR features (like TF-IDF and n-gram statistics) to remain lightweight and scalable to millions of documents. The reader is a neural model trained on supervised QA data to estimate start and end positions within a paragraph, and it can be adapted to new domains through fine-tuning or distant supervision. The repository includes scripts to build the Wikipedia index, train the reader, and evaluate end-to-end performance. DrQA popularized a practical recipe for combining IR and neural reading, and it remains a strong baseline for open-domain QA research and production prototypes.
Özellikler
- Scalable TF-IDF–based retriever over large corpora
- Neural span extractor trained for precise start/end predictions
- End-to-end pipeline from indexing to answering questions
- Tools for distant supervision and domain adaptation
- Reproducible training and evaluation scripts for standard datasets
- Modular components enabling IR or reader swaps and custom corpora
Programlama dili
Python
Kategoriler
This is an application that can also be fetched from https://sourceforge.net/projects/drqa.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
