This is the Linux app named DeepCluster whose latest release can be downloaded as deepclustersourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DeepCluster with OnWorks for free.
Дотримуйтесь цих інструкцій, щоб запустити цю програму:
- 1. Завантажив цю програму на свій ПК.
- 2. Введіть у наш файловий менеджер https://www.onworks.net/myfiles.php?username=XXXXX із потрібним ім'ям користувача.
- 3. Завантажте цю програму в такий файловий менеджер.
- 4. Запустіть онлайн-емулятор OnWorks Linux або Windows або онлайн-емулятор MACOS з цього веб-сайту.
- 5. З ОС OnWorks Linux, яку ви щойно запустили, перейдіть до нашого файлового менеджера https://www.onworks.net/myfiles.php?username=XXXXX з потрібним іменем користувача.
- 6. Завантажте програму, встановіть її та запустіть.
ЕКРАНИ
Ad
DeepCluster
ОПИС
DeepCluster is a classic self-supervised clustering-based representation learning algorithm that iteratively groups image features and uses the cluster assignments as pseudo-labels to train the network. In each round, features produced by the network are clustered (e.g. k-means), and the cluster IDs become supervision targets in the next epoch, encouraging the model to refine its representation to better separate semantic groups. This alternating “cluster & train” scheme helps the model gradually discover meaningful structure without labels. DeepCluster was one of the early successes in unsupervised visual feature learning, demonstrating that clustering-based reformulation can rival supervised baselines for many downstream tasks. The repository includes code for feature extraction, clustering, training loops, and evaluation benchmarks like linear probes. Because of its simplicity and modular design, DeepCluster has inspired many later methods.
Функції
- Unsupervised learning via iterative clustering and pseudo-label supervision
- Alternating pipeline: cluster features → use cluster IDs to train network
- Support for k-means or other clustering algorithms in feature space
- Training and evaluation scripts for downstream tasks (classification, detection)
- Modular code to swap network architectures or clustering methods
- Baseline reference for many later self-supervised approaches
Мова програмування
Python
Категорії
This is an application that can also be fetched from https://sourceforge.net/projects/deepcluster.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.