This is the Linux app named TimeSformer whose latest release can be downloaded as TimeSformersourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named TimeSformer with OnWorks for free.
Дотримуйтесь цих інструкцій, щоб запустити цю програму:
- 1. Завантажив цю програму на свій ПК.
- 2. Введіть у наш файловий менеджер https://www.onworks.net/myfiles.php?username=XXXXX із потрібним ім'ям користувача.
- 3. Завантажте цю програму в такий файловий менеджер.
- 4. Запустіть онлайн-емулятор OnWorks Linux або Windows або онлайн-емулятор MACOS з цього веб-сайту.
- 5. З ОС OnWorks Linux, яку ви щойно запустили, перейдіть до нашого файлового менеджера https://www.onworks.net/myfiles.php?username=XXXXX з потрібним іменем користувача.
- 6. Завантажте програму, встановіть її та запустіть.
ЕКРАНИ
Ad
TimeSformer
ОПИС
TimeSformer is a vision transformer architecture for video that extends the standard attention mechanism into spatiotemporal attention. The model alternates attention along spatial and temporal dimensions (or designs variants like divided attention) so that it can capture both appearance and motion cues in video. Because the attention is global across frames, TimeSformer can reason about dependencies across long time spans, not just local neighborhoods. The official implementation in PyTorch provides configurations, pretrained models, and training scripts that make it straightforward to evaluate or fine-tune on video datasets. TimeSformer was influential in showing that pure transformer architectures—without convolutional backbones—can perform strongly on video classification tasks. Its flexible attention design allows experimenting with different factoring (spatial-then-temporal, joint, etc.) to trade off compute, memory, and accuracy.
Функції
- Spatiotemporal transformer attention for video modeling
- Variants: divided spatial/temporal attention and joint attention schemas
- PyTorch reference implementation with pretrained weights and scripts
- Ability to reason about long-range temporal dependencies globally
- Configurable parameters for patch size, frames, embedding dimension, and head count
- Support for fine-tuning across video classification and recognition benchmarks
Мова програмування
Python
Категорії
This is an application that can also be fetched from https://sourceforge.net/projects/timesformer.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.