This is the Windows app named DeepSeek VL2 whose latest release can be downloaded as DeepSeek-VL2sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DeepSeek VL2 with OnWorks for free.
Làm theo các hướng dẫn sau để chạy ứng dụng này:
- 1. Đã tải ứng dụng này xuống PC của bạn.
- 2. Nhập vào trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.
- 3. Tải lên ứng dụng này trong trình quản lý tệp như vậy.
- 4. Khởi động bất kỳ trình giả lập trực tuyến OS OnWorks nào từ trang web này, nhưng trình giả lập trực tuyến Windows tốt hơn.
- 5. Từ Hệ điều hành Windows OnWorks bạn vừa khởi động, hãy truy cập trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.
- 6. Tải xuống ứng dụng và cài đặt nó.
- 7. Tải xuống Wine từ kho phần mềm phân phối Linux của bạn. Sau khi cài đặt, bạn có thể nhấp đúp vào ứng dụng để chạy chúng với Wine. Bạn cũng có thể thử PlayOnLinux, một giao diện đẹp mắt trên Wine sẽ giúp bạn cài đặt các chương trình và trò chơi phổ biến của Windows.
Wine là một cách để chạy phần mềm Windows trên Linux, nhưng không cần Windows. Wine là một lớp tương thích Windows mã nguồn mở có thể chạy các chương trình Windows trực tiếp trên bất kỳ máy tính để bàn Linux nào. Về cơ bản, Wine đang cố gắng triển khai lại đủ Windows từ đầu để nó có thể chạy tất cả các ứng dụng Windows đó mà không thực sự cần đến Windows.
MÀN HÌNH
Ad
DeepSeek VL2
MÔ TẢ
DeepSeek-VL2 is DeepSeek’s vision + language multimodal model—essentially the next-gen successor to their first vision-language models. It combines image and text inputs into a unified embedding / reasoning space so that you can query with text and image jointly (e.g. “What’s going on in this scene?” or “Generate a caption appropriate to context”). The model supports both image understanding (vision tasks) and multimodal reasoning, and is likely used as a component in agent systems to process visual inputs as context for downstream tasks. The repository includes evaluation results (e.g. image/text alignment scores, common VL benchmarks), configuration files, and model weights (where permitted). While the internal architecture details are not fully documented publicly, the repo suggests that VL2 introduces enhancements over prior vision-language models (e.g. better scaling, cross-modal attention, more robust alignment) to improve grounding and multimodal understanding.
Tính năng
- Joint image + text input modeling for vision-language tasks
- Multimodal reasoning capability across combined text/image queries
- Model weights and benchmark results for standard VL tasks
- Configuration files for tuning, inference, and deployment
- Designed for integration into agent systems as visual perception backend
- Improvements over prior VL models (e.g. better cross-attention, alignment robustness)
Ngôn ngữ lập trình
Python
Danh Mục
This is an application that can also be fetched from https://sourceforge.net/projects/deepseek-vl2.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.